Publications by authors named "Andrea di Donato"

Background: recently much studies evidenced the potential role of photo-biomodulation (PBM) in patients affected by Age-related Macular Degeneration (AMD). We designed a new wearable device for self-medication that employs the same broadband red light described in literature, but with extremely low irradiance.

Aim: to demonstrate the safety and effectiveness of low-fluence light stimulations emitted by a LED source with appropriate wavelengths through our new device in improving short-term visual function in patients affected by severe non neovascular AMD.

View Article and Find Full Text PDF

This paper presents the analytical derivation of spreading resistance expressions for diverse geometries of a conducting probe submerged in a lossy medium. Resulting equations can be used to calibrate scanning impedance/scanning microwave microscopes operating in liquid. The expressions are systematically validated through numerical and experimental methods for the calibration of an inverted Scanning Microwave Microscope (iSMM) when operating in a lossy saline medium, such as Dulbecco's Modified Eagle Medium (DMEM), a widely used medium for supporting the growth of biological cells.

View Article and Find Full Text PDF

We have developed a photo-mobile polymer film, that combines organic and inorganic materials, to allow for controlled motion that can be triggered by light or heat. Our film is made using recycled quartz and consists of two layers: a multi-acrylate polymer layer and a layer containing oxidized 4-amino-phenol and N-Vinyl-1-Pyrrolidinone. The use of quartz in our film also gives it a high temperature resistance of at least 350 °C.

View Article and Find Full Text PDF

In this work, we study the light-induced changes of the rotational speed of a thin photomobile film using a single-axis acoustic levitator operating at 40 kHz. In our experiments, a 50 μm thick photomobile polymer film (PMP) is placed in one of the nodes of a stationary acoustic field. Under the action of the field, the film remains suspended in air.

View Article and Find Full Text PDF

In this work, we test the effectiveness of using highly transparent holographic phase reflection and transmission volume gratings based on multifunctional acrylates as linear compression and rotation sensors. The gratings are recorded in a holographic mixture based on multi-reticulated acrylate and haloalkanes. To activate the photo-polymerization process, we used a mixture of 6-oxocamphore and rhodamine 6G.

View Article and Find Full Text PDF

We report on highly transparent holographic phase transmission volume gratings recorded in the visible region at λ = 532 nm. The maximum measured diffraction efficiency is higher than 80% with a grating pitch of Λ≈ 300 nm and a refractive index modulation Δn ≈ 0.018.

View Article and Find Full Text PDF

The integration of micro-optics in lab on a chip (LOCs) devices is crucial both for increasing the solid angle of acquisition and reducing the optical losses, aiming at improving the signal-to-noise ratio (SNR). In this work, we present the thriving combination of femtosecond laser irradiation followed by chemical etching (FLICE) technique with CO laser polishing and inkjet printing to fabricate in-plane, 3D off-axis reflectors, featuring ultra-high optical quality (RMS ∼3 nm), fully integrated on fused silica substrates. Such micro-optic elements can be used both in the excitation path, focusing an incoming beam in 3D, and in the acquisition branch, harvesting the optical signal coming from a specific point in space.

View Article and Find Full Text PDF

We report on the realization of Distributed Feedback (DFB) lasing by a high-resolution reflection grating integrated in a Photomobile Polymer (PMP) film. The grating is recorded in a recently developed holographic mixture basically containing halolakanes/acrylates and a fluorescent dye molecule (Rhodamine 6G). The PMP-mixture is placed around the grating spot and a subsequent curing/photo-polymerization process is promoted by UV-irradiation.

View Article and Find Full Text PDF

Holographic photomobile polymers (H-PMP) are a novel class of photomobile materials in which holograms can be optically recorded. They can be used in a large variety of applications, including optical switches and color selectors. In this work, we show one of the most important properties of the photomobile film, which is the photophobicity of the unpolymerized parts of the photomobile mixture.

View Article and Find Full Text PDF

We report on the morphological, spectral and dynamical characterization of one-dimensional transmission holographic volume phase gratings, whose refractive index contrast and nanometric pitch are dynamically controlled by an incident laser light. The grating is obtained by the photo-polymerization of a recently developed photo-mobile holographic composite polymer material. The observed changes in the refractive index contrast and grating pitch strongly suggest that the reversible all-optical real-time modulation of the obtained diffraction efficiency is induced by nano-fluidics.

View Article and Find Full Text PDF

The present paper describes a novel implementation of the continuous phase shifting method (PSM), named heterodyne holography, in a scanning probe microscope configuration, able to retrieve the complex scattered field in on-axis configuration. This can be achieved by acquiring a continuous sequence of holograms at different wavelengths in just a single scan through the combination of scanning interference microscopy and a low-coherent signal acquired in the frequency domain. This method exploits the main advantages of the phase shifting technique and avoids some limits relative to off-axis holography in providing quantitative phase imaging.

View Article and Find Full Text PDF

Recently, it was shown that a Mie particle in an evanescent field ought to experience optical forces that depend on the helicity of the totally internally reflected beam. As yet, a direct measurement of such helicity-dependent forces has been elusive, as the widely differing force magnitudes in the three spatial dimensions place stringent demands on a measurement's sensitivity and range. In this study, we report the simultaneous measurement of all components of this polarization-dependent optical force by using a 3D force spectroscopy technique with femtonewton sensitivity.

View Article and Find Full Text PDF

Exosomes are nanovesicles known to mediate intercellular communication. Although it is established that zinc ions can act as intracellular signaling factors, the measurement of zinc in circulating nanovesicles has not yet been attempted. Providing evidence of the existence of this zinc fraction and methods for its measurement might be important to advance our knowledge of zinc status and its relevance in diseases.

View Article and Find Full Text PDF

The extracellular guanosine 5'-triphosphate, GTP, has been demonstrated to be an enhancer of myogenic cell differentiation in a murine cell line, not yet in human muscle cells. Our hypothesis was that GTP could influence also human skeletal muscle regeneration, specifically in the first phases. We tested GTP stimulus on human muscle precursor cells established in culture by human satellite cells derived from Vastus Lateralis of three young male.

View Article and Find Full Text PDF

We examine the motion of periodically driven and optically tweezed microspheres in fluid and find a rich variety of dynamic regimes. We demonstrate, in experiment and in theory, that mean particle motion in 2D is rarely parallel to the direction of the applied force and can even exhibit elliptical orbits with nonzero orbital angular momentum. The behavior is unique in that it depends neither on the nature of the microparticles nor that of the excitation; rather, angular momentum is introduced by the particle's interaction with the anisotropic fluid and optical trap environment.

View Article and Find Full Text PDF

A scanning optical microcavity is exploited to achieve lens-free 3D tomography of microfluidic channels. The microcavity, powered by a low-coherence source, is realized by approaching a cleaved fiber to few tens of micrometers over the sample. The interference of scattered waves inside the cavity shapes the transverse field distribution by focusing the beam and overcoming the diffraction limit due to the optical-fiber numerical aperture.

View Article and Find Full Text PDF

The mutual interference of light scattered inside an extrinsic Fabry-Perot microcavity, fed by a low-coherence light, is exploited to achieve infrared imaging in a liquid environment. The transverse field distribution inside a cavity is shaped by the effect of scattered interfering waves in a lens-free system. Reflectivity and contrast phase maps are extracted through the analysis of the cavity response in the time domain.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in data storage and electronics have led to a variety of techniques for patterning polymers at micro and nanoscale levels, often using atomic force microscopy (AFM).
  • This study reveals that the mechanical interaction between an AFM tip and π-conjugated polymer films can create areas with decreased conductivity without changing the surface's shape.
  • The method allows for the quick production of low-conductivity patterns at speeds over 20 μm/s, achieving a resolution of about 20 nm, detectable through conductivity mapping with an AFM tip.
View Article and Find Full Text PDF

Microwave microscopy has recently attracted intensive effort, owing to its capability to provide quantitative information about the local composition and the electromagnetic response of a sample. Nonetheless, the interpretation of microwave images remains a challenge as the electromagnetic waves interact with the sample and the surrounding in a multitude of ways following different paths: microwave images are a convolution of all contributions. In this work we show that examining the time evolution of the electromagnetic waves allows us to disentangle each contribution, providing images with striking quality and unexplored scenarios for near-field microscopy.

View Article and Find Full Text PDF

In this contribution, we analyze the multichannel coherent transport in graphene nanoribbons (GNRs) by a scattering matrix approach. We consider the transport properties of GNR devices of a very general form, involving multiple bands and multiple leads. The 2D quantum transport over the whole GNR surface, described by the Schrödinger equation, is strongly nonlinear as it implies calculation of self-generated and externally applied electrostatic potentials, solutions of the 3D Poisson equation.

View Article and Find Full Text PDF