Publications by authors named "Andrea Wirsing"

Dysfunction of hepatocyte nuclear factor 4α (HNF4α) has been linked to maturity onset diabetes of the young (MODY1), diabetes type II and possibly to renal cell carcinoma (RCC). Whereas diabetes causing mutations are well known, there are no HNF4A mutations found in RCC. Since so far analyses have been constricted to the promoter and open reading frame of HNF4A, we performed a systematic analysis of the human HNF4A 3'UTR.

View Article and Find Full Text PDF

Mutations in hepatocyte nuclear factor 1B (HNF1B), which is a transcription factor expressed in tissues including renal epithelia, associate with abnormal renal development. While studying renal phenotypes of children with HNF1B mutations, we identified a teenager who presented with tetany and hypomagnesemia. We retrospectively reviewed radiographic and laboratory data for all patients from a single center who had been screened for an HNF1B mutation.

View Article and Find Full Text PDF

Abstract Few genes are known to be involved in renal cell carcinoma (RCC) development and progression. The cell-specific transcription factor hepatocyte nuclear factor 4 alpha (HNF4 alpha) is down-regulated in RCC and we have shown that HNF4 alpha inhibits cell proliferation in the embryonic kidney cell line HEK293. To clarify the possible tumor suppressor activity of HNF4 alpha we analyzed the whole human expression profile in HEK293 cells upon HNF4 alpha induction.

View Article and Find Full Text PDF

The phototrophic purple bacterium Rhodobacter capsulatus encodes two similar but functionally not identical molybdenum-dependent regulator proteins (MopA and MopB), which are known to replace each other in repression of the modABC genes (coding for an ABC-type high-affinity Mo transport system) and anfA (coding for the transcriptional activator of Fe-nitrogenase genes). We identified further Mo-regulated (mor) genes coding for a putative ABC-type transport system of unknown function (MorABC) and a putative Mo-binding protein (Mop). The genes coding for MopA and the ModABC transporter form part of a single transcriptional unit, mopA-modABCD, as shown by reverse transcriptase PCR.

View Article and Find Full Text PDF