We studied the frequency and quality factor of mechanical plasmonic nanoresonators as a function of temperature, ranging from ambient to 4 K. Our investigation focused on individual gold nanorods and nanodisks of various sizes. We observed that oscillation frequencies increase linearly as temperature decreases until saturation is reached at cryogenic temperatures.
View Article and Find Full Text PDFPlasmonic nanoantennas have proven to be efficient transducers of electromagnetic to mechanical energy and vice versa. The sudden thermal expansion of these structures after an ultrafast optical pulsed excitation leads to the emission of hypersonic acoustic waves to the supporting substrate, which can be detected by another antenna that acts as a high-sensitivity mechanical probe due to the strong modulation of its optical response. Here, we propose and experimentally demonstrate a nanoscale acoustic lens comprised of 11 gold nanodisks whose collective oscillation at gigahertz frequencies gives rise to an interference pattern that results in a diffraction-limited surface acoustic beam of about 340 nm width, with an amplitude contrast of 60%.
View Article and Find Full Text PDFOptical forces on nanostructures are usually characterized by their interaction with the electric field component of the light wave, given that most materials present negligible magnetic response at optical frequencies. This is not the case however of a high-refractive-index dielectric nanoantenna, which has been recently shown to efficiently support both electric and magnetic optical modes. In this work, we use a photoinduced force microscopy configuration to measure optically induced forces produced by a germanium nanoantenna on a surrounding silicon near-field probe.
View Article and Find Full Text PDFThe optical properties of small metallic particles allow us to bridge the gap between the myriad of subdiffraction local phenomena and macroscopic optical elements. The optomechanical coupling between mechanical vibrations of Au nanoparticles and their optical response due to collective electronic oscillations leads to the emission and the detection of surface acoustic waves (SAWs) by single metallic nanoantennas. We take two Au nanoparticles, one acting as a source and the other as a receptor of SAWs and, even though these antennas are separated by distances orders of magnitude larger than the characteristic subnanometric displacements of vibrations, we probe the frequency content, wave speed, and amplitude decay of SAWs originating from the damping of coherent mechanical modes of the source.
View Article and Find Full Text PDFThe adhesion of cells to the extracellular matrix is a hierarchical, force-dependent, multistage process that evolves at several temporal scales. An understanding of this complex process requires a precise measurement of forces and its correlation with protein responses in living cells. We present a method to quantitatively assess live cell responses to a local and specific mechanical stimulus.
View Article and Find Full Text PDFUltrashort laser pulses impinging on a plasmonic nanostructure trigger a highly dynamic scenario in the interplay of electronic relaxation with lattice vibrations, which can be experimentally probed via the generation of coherent phonons. In this Letter, we present studies of hypersound generation in the range of a few to tens of gigahertz on single gold plasmonic nanoantennas, which have additionally been subjected to predesigned mechanical constraints via silica bridges. Using these hybrid gold/silica nanoantennas, we demonstrate experimentally and via numerical simulations how mechanical constraints allow control over their vibrational mode spectrum.
View Article and Find Full Text PDFNanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field 'hot spots'. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interactions, highly enhanced nonlinearities and nanoscale waveguiding.
View Article and Find Full Text PDFWe introduce a plasmonic-semiconductor hybrid nanosystem, consisting of a ZnO nanowire coupled to a gold pentamer oligomer by crossing the hot-spot. It is demonstrated that the hybrid system exhibits a second harmonic (SH) conversion efficiency of ∼3 × 10(-5)%, which is among the highest values for a nanoscale object at optical frequencies reported so far. The SH intensity was found to be ∼1700 times larger than that from the same nanowire excited outside the hot-spot.
View Article and Find Full Text PDFResonant interaction of laser pulses with plasmons is used to identify vibrations associated with isolated spheres and pairs of contacting spheres in a system of gold nanoparticles. The optical pulses generate coherent mechanical oscillations of both monomers and dimers in the 5-150 GHz range, the amplitudes of which exhibit a strong enhancement when the laser central wavelength is tuned to resonate with the corresponding plasmon. Because of the resonant selection in the excitation process, the widths of the acoustic modes are significantly smaller than broadening caused by the spread in radii in the ensemble.
View Article and Find Full Text PDFWe study the dynamics of the coverage and aggregation of gold nanoparticles over organosilanized glass substrates for different sizes of nanoparticles. We present measurements of extinction spectra and nanoparticle counting statistics and demonstrate that both methods are equivalent describing those processes. We introduce models that describe the mentioned dynamics, which are characterized by an exponential-like function with two relevant parameters: a saturation value and a characteristic time.
View Article and Find Full Text PDFWe present a novel noncontact, photothermal technique, based on the focus error signal of a commercial CD pickup head that allows direct determination of absorption in thin films. Combined with extinction methods, this technique yields the scattering contribution to the losses. Surface plasmon polaritons are excited using the Kretschmann configuration in thin Au films of varying thickness.
View Article and Find Full Text PDFWe present measurements of the optical second-harmonic generation in self assembled multilayer films of PAZO/PAH polymers with the aim to investigate molecular order in the layer-by-layer architecture. The experiments are performed in transmission, using a femtosecond Ti:Sa pulsed laser, which allows a more accurate determination of the amplitude of the second harmonic signal, without interference fringes usually present in nanosecond experiments. We found that the first bilayer, in contact with the substrate, presents a broad distribution of the orientation of the molecules, while the addition of successive bilayers (up to 12) produces ordering of the molecules with a small tilt angle respect to the surface normal.
View Article and Find Full Text PDFWe present a complete set of measurements and numerical simulations of a femtosecond soliton source with fast and broad spectral tunability and nearly constant pulse width and average power. Solitons generated in a photonic crystal fiber, at the low-power coupling regime, can be tuned in a broad range of wavelengths, from 850 to 1200 nm using the input power as the control parameter. These solitons keep almost constant time duration (approximately 40 fs) and spectral widths (approximately 20 nm) over the entire measured spectra regardless of input power.
View Article and Find Full Text PDFAccording to quantum mechanics, a many-particle system is allowed to exhibit non-local behaviour, in that measurements performed on one of the particles can affect a second one that is far away. These so-called entangled states are crucial for the implementation of most quantum information protocols and, in particular, gates for quantum computation. Here we use ultrafast optical pulses and coherent techniques to create and control spin-entangled states in an ensemble of non-interacting electrons bound to donors (at least three) and at least two Mn2+ ions in a CdTe quantum well.
View Article and Find Full Text PDF