Next-generation data networks need to support Tb/s rates. In-phase and quadrature (IQ) modulation combine phase and intensity information to increase the density of encoded data, reduce overall power consumption by minimizing the number of channels, and increase noise tolerance. To reduce errors when decoding the received signal, intersymbol interference must be minimized.
View Article and Find Full Text PDFGraphene is a unique platform for tunable opto-electronic applications thanks to its linear band dispersion, which allows electrical control of resonant light-matter interactions. Tuning the nonlinear optical response of graphene is possible both electrically and in an all-optical fashion, but each approach involves a trade-off between speed and modulation depth. Here, lattice temperature, electron doping, and all-optical tuning of third-harmonic generation are combined in a hexagonal boron nitride-encapsulated graphene opto-electronic device and demonstrate up to 85% modulation depth along with gate-tunable ultrafast dynamics.
View Article and Find Full Text PDFCMOS-compatible materials for efficient energy harvesters at temperatures characteristic for on-chip operation and body temperature are the key ingredients for sustainable green computing and ultralow power Internet of Things applications. In this context, the lattice thermal conductivity (κ) of new group IV semiconductors, namely GeSn alloys, are investigated. Layers featuring Sn contents up to 14 at.
View Article and Find Full Text PDFThe ability to tune the optical response of a material via electrostatic gating is crucial for optoelectronic applications, such as electro-optic modulators, saturable absorbers, optical limiters, photodetectors, and transparent electrodes. The band structure of single layer graphene (SLG), with zero-gap, linearly dispersive conduction and valence bands, enables an easy control of the Fermi energy, , and of the threshold for interband optical absorption. Here, we report the tunability of the SLG nonequilibrium optical response in the near-infrared (1000-1700 nm/0.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFMetamaterials have recently established a new paradigm for enhanced light absorption in state-of-the-art photodetectors. Here, we demonstrate broadband, highly efficient, polarization-insensitive, and gate-tunable photodetection at room temperature in a novel metadevice based on gold/graphene Sierpinski carpet plasmonic fractals. We observed an unprecedented internal quantum efficiency up to 100% from the near-infrared to the visible range with an upper bound of optical detectivity of 10 Jones and a gain up to 10, which is a fingerprint of multiple hot carriers photogenerated in graphene.
View Article and Find Full Text PDFWe present a micrometer-scale, on-chip integrated, plasmonic enhanced graphene photodetector (GPD) for telecom wavelengths operating at zero dark current. The GPD is designed to directly generate a photovoltage by the photothermoelectric effect. It is made of chemical vapor deposited single layer graphene, and has an external responsivity ∼12.
View Article and Find Full Text PDFFor many of the envisioned optoelectronic applications of graphene, it is crucial to understand the subpicosecond carrier dynamics immediately following photoexcitation and the effect of photoexcitation on the electrical conductivity-the photoconductivity. Whereas these topics have been studied using various ultrafast experiments and theoretical approaches, controversial and incomplete explanations concerning the sign of the photoconductivity, the occurrence and significance of the creation of additional electron-hole pairs, and, in particular, how the relevant processes depend on Fermi energy have been put forward. We present a unified and intuitive physical picture of the ultrafast carrier dynamics and the photoconductivity, combining optical pump-terahertz probe measurements on a gate-tunable graphene device, with numerical calculations using the Boltzmann equation.
View Article and Find Full Text PDFGraphene is known to possess strong optical nonlinearity which turned out to be suitable for creation of efficient saturable absorbers in mode locked fiber lasers. Nonlinear response of graphene can be further enhanced by the presence of graphene plasmons. Here, we report a novel nonlinear effect observed in nanostructured graphene which comes about due to excitation of graphene plasmons.
View Article and Find Full Text PDFWe demonstrate localization and field-effect spatial control of the plasmon resonance in semiconductor nanostructures, using scattering-type scanning near-field optical microscopy in the mid-infrared region. We adopt InAs nanowires embedding a graded doping profile to modulate the free carrier density along the axial direction. Our near-field measurements have a spatial resolution of 20 nm and demonstrate the presence of a local resonant feature whose position can be controlled by a back-gate bias voltage.
View Article and Find Full Text PDFRecently studied hyperbolic materials host unique phonon-polariton (PP) modes. The ultrashort wavelengths of these modes, as well as their low damping, hold promise for extreme subdiffraction nanophotonics schemes. Polar hyperbolic materials such as hexagonal boron nitride can be used to realize long-range coupling between PP modes and extraneous charge degrees of freedom.
View Article and Find Full Text PDFThe shear viscosity of a variety of strongly interacting quantum fluids, ranging from ultracold atomic Fermi gases to quark-gluon plasmas, can be accurately measured. On the contrary, no experimental data exist, to the best of our knowledge, on the shear viscosity of two-dimensional quantum electron liquids hosted in a solid-state matrix. In this work we propose a Corbino disk device, which allows a determination of the viscosity of a quantum electron liquid from the dc potential difference that arises between the inner and the outer edge of the disk in response to an oscillating magnetic flux.
View Article and Find Full Text PDFWe discuss an open driven-dissipative many-body system, in which the competition of unitary Hamiltonian and dissipative Liouvillian dynamics leads to a nonequilibrium phase transition. It shares features of a quantum phase transition in that it is interaction driven, and of a classical phase transition, in that the ordered phase is continuously connected to a thermal state. We characterize the phase diagram and the critical behavior at the phase transition approached as a function of time.
View Article and Find Full Text PDFA perturbative model is studied for the tunneling of many-particle states from the ground band to the first excited energy band, mimicking Landau-Zener decay for ultracold, spinless atoms in quasi-one-dimensional optical lattices subjected to a tunable tilting force. The distributions of the computed tunneling rates provide an independent and experimentally accessible signature of the regular-chaotic transition in the strongly correlated many-body dynamics of the ground band.
View Article and Find Full Text PDF