The longevity of cratons usually implies that the entire cratonic lithosphere remained unchanged over billions of years, which is traditionally attributed to their intrinsically buoyant and strong lithospheric roots. By reviewing relevant studies and recent observational constraints, we show that the present cratonic roots are notably denser than the ambient mantle, with the compositional buoyancy offsetting only one-fifth of the negative thermal buoyancy. In addition, the presence of a weak mid-lithospheric discontinuity could decouple the upper and lower lithosphere upon perturbation, allowing delamination of the lower portion, while most of the delaminated lithosphere would eventually relaminate to the base of the lithosphere after sufficient warming inside the convective mantle.
View Article and Find Full Text PDFProvenance studies demonstrate the important control of plate boundary mountain building on continental sediment routing systems. Less well understood is if subsidence and uplift in cratons also has the potential to affect the organization of sediment routing systems on continental scales. New detrital zircon provenance data from the Michigan Basin in the Midcontinent of North America preserve evidence of intrabasin provenance heterogeneity in Cambrian, Ordovician, and middle Devonian strata.
View Article and Find Full Text PDF