Publications by authors named "Andrea Steinhuber"

Isothermal microcalorimetry is an established tool to measure heat flow of physical, chemical or biological processes. The metabolism of viable cells produces heat, and if sufficient cells are present, their heat production can be assessed by this method. In this study, we investigated the heat flow of two medically important protozoans, Trypanosoma brucei rhodesiense and Plasmodium falciparum.

View Article and Find Full Text PDF

Alpha-D-mannopyranosides are potent FimH antagonists, which inhibit the adhesion of Escherichia coli to highly mannosylated uroplakin Ia on the urothelium and therefore offer an efficient therapeutic opportunity for the treatment and prevention of urinary tract infection. For the evaluation of the therapeutic potential of FimH antagonists, their effect on the disaggregation of E. coli from Candida albicans and guinea pig erythrocytes (GPE) was studied.

View Article and Find Full Text PDF

Ga(3+) is a semimetal element that competes for the iron-binding sites of transporters and enzymes. We investigated the activity of gallium maltolate (GaM), an organic gallium salt with high solubility, against laboratory and clinical strains of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-susceptible Staphylococcus epidermidis (MSSE), and methicillin-resistant S.

View Article and Find Full Text PDF

We describe a calorimetric assay for the detection of methicillin-resistant Staphylococcus aureus (MRSA) within 5 h. Microbial heat was calculated in culture with and without cefoxitin. Among 30 genetically distinct clinical isolates, 19/20 MRSA (95%) and 10/10 methicillin-susceptible Staphylococcus aureus (100%) were correctly identified.

View Article and Find Full Text PDF

T cells move randomly ("random-walk"), a characteristic thought to be integral to their function. Using migration assays and time-lapse microscopy, we found that CD8+ T cells lacking the lymph node homing receptors CCR7 and CD62L migrate more efficiently in transwell assays, and that these same cells are characterized by a high frequency of cells exhibiting random crawling activity under culture conditions mimicking the interstitial/extravascular milieu, but not when examined on endothelial cells. To assess the energy efficiency of cells crawling at a high frequency, we measured mRNA expression of genes key to mitochondrial energy metabolism (peroxisome proliferator-activated receptor gamma coactivator 1beta [PGC-1beta], estrogen-related receptor alpha [ERRalpha], cytochrome C, ATP synthase, and the uncoupling proteins [UCPs] UCP-2 and -3), quantified ATP contents, and performed calorimetric analyses.

View Article and Find Full Text PDF

Alpha-toxin (Hla, encoded by hla) is a major virulence factor of Staphylococcus aureus. The activity of the hla promoter was analyzed using luxABCDE on an integration vector. The phla-lux construct was introduced in S.

View Article and Find Full Text PDF

Background: Calorimetry is a nonspecific technique which allows direct measurement of heat generated by biological processes in the living cell. We evaluated the potential of calorimetry for rapid detection of bacterial growth in cerebrospinal fluid (CSF) in a rat model of bacterial meningitis.

Methods: Infant rats were infected on postnatal day 11 by direct intracisternal injection with either Streptococcus pneumoniae, Neisseria meningitidis or Listeria monocytogenes.

View Article and Find Full Text PDF

The alternative sigma factor sigma(B) of Staphylococcus aureus controls the expression of a variety of genes, including virulence determinants and global regulators. Genetic manipulations and transcriptional start point (TSP) analyses showed that the sigB operon is transcribed from at least two differentially controlled promoters: a putative sigma(A)-dependent promoter, termed sigB(p1), giving rise to a 3.6-kb transcript covering sa2059-sa2058-rsbU-rsbV-rsbW-sigB, and a sigma(B)-dependent promoter, sigB(p3), initiating a 1.

View Article and Find Full Text PDF

The ability of Staphylococcus aureus to adapt to different environments is due to a regulatory network comprising several loci. Here we present a detailed study of the interaction between the two global regulators sae and sigmaB of S. aureus and their influence on virulence gene expression in vitro, as well as during device-related infection.

View Article and Find Full Text PDF

Biofilm formation of Staphylococcus epidermidis and S. aureus is mediated by the polysaccharide intercellular adhesin (PIA) encoded by the ica operon. We used a device-related animal model to investigate biofilm formation, PIA expression (immunofluorescence), and ica transcription (quantitative transcript analysis) throughout the course of infection by using two prototypic S.

View Article and Find Full Text PDF

We characterized the sae operon, a global regulator for virulence gene expression in Staphylococcus aureus. A Tn917 sae mutant was obtained by screening a Tn917 library of the agr mutant ISP479Mu for clones with altered hemolytic activity. Sequence analysis of the sae operon revealed two additional open reading frames (ORFs) (ORF3 and ORF4) upstream of the two-component regulatory genes saeR and saeS.

View Article and Find Full Text PDF