Anderson localization predicts that transport in one-dimensional uncorrelated disordered systems comes to a complete halt, experiencing no transport whatsoever. However, in reality, a disordered physical system is always correlated because it must have a finite spectrum. Common wisdom in the field states that localization is dominant only for wave packets whose spectral extent resides within the region of the wave number span of the disorder.
View Article and Find Full Text PDFLight propagation is strongly affected by scattering due to imperfections in the complex medium. It has been recently theoretically predicted that a scattering-free transport through an inhomogeneous medium is achievable by non-Hermitian tailoring of the complex refractive index. Here, we implement photonic constant-intensity waves in an inhomogeneous, linear, discrete mesh lattice.
View Article and Find Full Text PDF