Publications by authors named "Andrea Sottoriva"

We profiled a large heterogenous cohort of matched diagnostic-relapse tumour tissue and paired plasma-derived cell free DNA (cfDNA) from patients with relapsed and progressive solid tumours of childhood. Tissue and cfDNA sequencing results were concordant, with a wider spectrum of mutant alleles and higher degree of intra-tumour heterogeneity captured by the latter, if sufficient circulating tumour-derived DNA (ctDNA) was present. Serial tumour sequencing identified putative drivers of relapse, with alterations in epigenetic drivers being a common feature.

View Article and Find Full Text PDF

Purpose: we tested whether ctDNA changes may be used to assess early response and clinical outcome in metastatic colorectal cancer (mCRC) patients undergoing front-line systemic anti-cancer therapy (SACT).

Experimental Design: 862 plasma samples were collected 4-weekly from baseline (BL) until disease progression in mCRC patients receiving front line SACT. ctDNA normalization was defined as ≥99% clearance after 1 month of therapy (Mo1) in the 3 variants with the highest allele frequency in BL ctDNA.

View Article and Find Full Text PDF

Colorectal carcinoma (CRC) is a common cause of mortality, but a comprehensive description of its genomic landscape is lacking. Here we perform whole-genome sequencing of 2,023 CRC samples from participants in the UK 100,000 Genomes Project, thereby providing a highly detailed somatic mutational landscape of this cancer. Integrated analyses identify more than 250 putative CRC driver genes, many not previously implicated in CRC or other cancers, including several recurrent changes outside the coding genome.

View Article and Find Full Text PDF

Cancer evolution lays the groundwork for predictive oncology. Testing evolutionary metrics requires quantitative measurements in controlled clinical trials. We mapped genomic intratumor heterogeneity in locally advanced prostate cancer using 642 samples from 114 individuals enrolled in clinical trials with a 12-year median follow-up.

View Article and Find Full Text PDF

Mismatch repair (MMR)-deficient cancer evolves through the stepwise erosion of coding homopolymers in target genes. Curiously, the MMR genes MutS homolog 6 (MSH6) and MutS homolog 3 (MSH3) also contain coding homopolymers, and these are frequent mutational targets in MMR-deficient cancers. The impact of incremental MMR mutations on MMR-deficient cancer evolution is unknown.

View Article and Find Full Text PDF

Background: Carcinogenesis is driven by interactions between genetic mutations and the local tumor microenvironment. Recent research has identified hundreds of cancer driver genes; however, these studies often include a mixture of different molecular subtypes and ecological niches and ignore the impact of the immune system.

Results: In this study, we compare the landscape of driver genes in tumors that escaped the immune system (escape +) versus those that did not (escape -).

View Article and Find Full Text PDF

Unlabelled: Patients with estrogen receptor-positive breast cancer receive adjuvant endocrine therapies (ET) that delay relapse by targeting clinically undetectable micrometastatic deposits. Yet, up to 50% of patients relapse even decades after surgery through unknown mechanisms likely involving dormancy. To investigate genetic and transcriptional changes underlying tumor awakening, we analyzed late relapse patients and longitudinally profiled a rare cohort treated with long-term neoadjuvant ETs until progression.

View Article and Find Full Text PDF

Immune system control is a major hurdle that cancer evolution must circumvent. The relative timing and evolutionary dynamics of subclones that have escaped immune control remain incompletely characterized, and how immune-mediated selection shapes the epigenome has received little attention. Here, we infer the genome- and epigenome-driven evolutionary dynamics of tumour-immune coevolution within primary colorectal cancers (CRCs).

View Article and Find Full Text PDF

Unlabelled: Cancer cells adapt and survive through the acquisition and selection of molecular modifications. This process defines cancer evolution. Building on a theoretical framework based on heritable genetic changes has provided insights into the mechanisms supporting cancer evolution.

View Article and Find Full Text PDF

The dominant mutational signature in colorectal cancer genomes is C > T deamination (COSMIC Signature 1) and, in a small subgroup, mismatch repair signature (COSMIC signatures 6 and 44). Mutations in common colorectal cancer driver genes are often not consistent with those signatures. Here we perform whole-genome sequencing of normal colon crypts from cancer patients, matched to a previous multi-omic tumour dataset.

View Article and Find Full Text PDF

Non-genetic alterations can produce changes in a cell's phenotype. In cancer, these phenomena can influence a cell's fitness by conferring access to heritable, beneficial phenotypes. Herein, we argue that current discussions of 'phenotypic plasticity' in cancer evolution ignore a salient feature of the original definition: namely, that it occurs in response to an environmental change.

View Article and Find Full Text PDF

In cancer, evolutionary forces select for clones that evade the immune system. Here we analyzed >10,000 primary tumors and 356 immune-checkpoint-treated metastases using immune dN/dS, the ratio of nonsynonymous to synonymous mutations in the immunopeptidome, to measure immune selection in cohorts and individuals. We classified tumors as immune edited when antigenic mutations were removed by negative selection and immune escaped when antigenicity was covered up by aberrant immune modulation.

View Article and Find Full Text PDF

Genetic and epigenetic variation, together with transcriptional plasticity, contribute to intratumour heterogeneity. The interplay of these biological processes and their respective contributions to tumour evolution remain unknown. Here we show that intratumour genetic ancestry only infrequently affects gene expression traits and subclonal evolution in colorectal cancer (CRC).

View Article and Find Full Text PDF

Colorectal malignancies are a leading cause of cancer-related deathand have undergone extensive genomic study. However, DNA mutations alone do not fully explain malignant transformation. Here we investigate the co-evolution of the genome and epigenome of colorectal tumours at single-clone resolution using spatial multi-omic profiling of individual glands.

View Article and Find Full Text PDF

Diffuse midline gliomas (DMGs) are highly aggressive, incurable childhood brain tumors. They present a clinical challenge due to many factors, including heterogeneity and diffuse infiltration, complicating disease management. Recent studies have described the existence of subclonal populations that may co-operate to drive pro-tumorigenic processes such as cellular invasion.

View Article and Find Full Text PDF

We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5'-methylcytosine.

View Article and Find Full Text PDF

The evolutionary dynamics of tumor initiation remain undetermined, and the interplay between neoplastic cells and the immune system is hypothesized to be critical in transformation. Colorectal cancer (CRC) presents a unique opportunity to study the transition to malignancy as pre-cancers (adenomas) and early-stage cancers are frequently resected. Here, we examine tumor-immune eco-evolutionary dynamics from pre-cancer to carcinoma using a computational model, ecological analysis of digital pathology data, and neoantigen prediction in 62 patient samples.

View Article and Find Full Text PDF

Objective: Clinical diagnostic sequencing of circulating tumour DNA (ctDNA) is well advanced for adult patients, but application to paediatric cancer patients lags behind.

Methods: To address this, we have developed a clinically relevant (67 gene) NGS capture panel and accompanying workflow that enables sensitive and reliable detection of low-frequency genetic variants in cell-free DNA (cfDNA) from children with solid tumours. We combined gene panel sequencing with low pass whole-genome sequencing of the same library to inform on genome-wide copy number changes in the blood.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how genetic diversity in tumors arises, particularly the formation and spread of karyotype alterations in human tumors at a single-cell level.
  • Researchers developed a method called 3D Live-Seq that combines live imaging of tumor organoids and whole-genome sequencing to track changes in tumor cells over generations.
  • Findings show that karyotype changes occur rapidly and can either happen gradually through multiple cell divisions or emerge suddenly from a single division, highlighting the complex evolution of tumor genomes.
View Article and Find Full Text PDF

Background: The large-scale availability of whole-genome sequencing profiles from bulk DNA sequencing of cancer tissues is fueling the application of evolutionary theory to cancer. From a bulk biopsy, subclonal deconvolution methods are used to determine the composition of cancer subpopulations in the biopsy sample, a fundamental step to determine clonal expansions and their evolutionary trajectories.

Results: In a recent work we have developed a new model-based approach to carry out subclonal deconvolution from the site frequency spectrum of somatic mutations.

View Article and Find Full Text PDF

Objective: Epidermal growth factor receptor (EGFR) inhibition may be effective in biomarker-selected populations of advanced gastro-oesophageal adenocarcinoma (aGEA) patients. Here, we tested the association between outcome and copy number (CN) in pretreatment tissue and plasma cell-free DNA (cfDNA) of patients enrolled in a randomised first-line phase III clinical trial of chemotherapy or chemotherapy plus the anti-EGFR monoclonal antibody panitumumab in aGEA (NCT00824785).

Design: CN by either fluorescence in situ hybridisation (n=114) or digital-droplet PCR in tissues (n=250) and plasma cfDNAs (n=354) was available for 474 (86%) patients in the intention-to-treat (ITT) population.

View Article and Find Full Text PDF

Cancers accumulate mutations that lead to neoantigens, novel peptides that elicit an immune response, and consequently undergo evolutionary selection. Here we establish how negative selection shapes the clonality of neoantigens in a growing cancer by constructing a mathematical model of neoantigen evolution. The model predicts that, without immune escape, tumor neoantigens are either clonal or at low frequency; hypermutated tumors can only establish after the evolution of immune escape.

View Article and Find Full Text PDF

Most cancer genomic data are generated from bulk samples composed of mixtures of cancer subpopulations, as well as normal cells. Subclonal reconstruction methods based on machine learning aim to separate those subpopulations in a sample and infer their evolutionary history. However, current approaches are entirely data driven and agnostic to evolutionary theory.

View Article and Find Full Text PDF

Blockade of epidermal growth factor receptor (EGFR) causes tumor regression in some patients with metastatic colorectal cancer (mCRC). However, residual disease reservoirs typically remain even after maximal response to therapy, leading to relapse. Using patient-derived xenografts (PDXs), we observed that mCRC cells surviving EGFR inhibition exhibited gene expression patterns similar to those of a quiescent subpopulation of normal intestinal secretory precursors with Paneth cell characteristics.

View Article and Find Full Text PDF

Drug resistance mediated by clonal evolution is arguably the biggest problem in cancer therapy today. However, evolving resistance to one drug may come at a cost of decreased fecundity or increased sensitivity to another drug. These evolutionary trade-offs can be exploited using 'evolutionary steering' to control the tumour population and delay resistance.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: