Publications by authors named "Andrea Sobo-Vujanovic"

: Increases in expression of ADAM10 and ADAM17 genes and proteins are inconsistently found in cancer lesions, and are not validated as clinically useful biomarkers. The enzyme-specific proteolytic activities, which are solely mediated by the active mature enzymes, directly reflect enzyme cellular functions and might be superior biomarkers than the enzyme gene or protein expressions, which comprise the inactive proenzymes and active and inactivated mature enzymes. Using a recent modification of the proteolytic activity matrix analysis (PrAMA) measuring specific enzyme activities in cell and tissue lysates, we examined the specific sheddase activities of ADAM10 (ADAM10sa) and ADAM17 (ADAM17sa) in human non-small cell lung-carcinoma (NSCLC) cell lines, patient primary tumors and blood exosomes, and the noncancerous counterparts.

View Article and Find Full Text PDF

TNF is a potent promoter of carcinogenesis and potentially important target for cancer prevention. TNF is produced as functionally distinct transmembrane and soluble molecules (tmTNF and sTNF, respectively), but their individual roles in carcinogenesis are unexplored. We investigated the participation of tmTNF and sTNF in chemically induced carcinogenesis in mice.

View Article and Find Full Text PDF

Dendritic cells (DCs) are the major sentinel, antigen-presenting and regulatory components of the immune system. One of the central DC functions is to rapidly sense and alert host immune system of a pathogen invasion. In the present study, we investigated the role of DC exosomes (DCex) in this sentinel function.

View Article and Find Full Text PDF

Autocrine and paracrine cell communication can be conveyed by multiple mediators, including membrane-associate proteins, secreted proteins and exosomes. Exosomes are 30-100 nm endosome-derived vesicles consisting in cytosolic material surrounded by a lipid bilayer containing transmembrane proteins. We have previously shown that dendritic cells (DCs) express on their surface multiple TNF superfamily ligands (TNFSFLs), by which they can induce the apoptotic demise of tumor cells as well as the activation of natural killer (NK) cells.

View Article and Find Full Text PDF