Publications by authors named "Andrea Skinner"

Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs.

View Article and Find Full Text PDF

Dissociation of imaginal disc cells has been carried out previously to enable flow cytometry and cell sorting to analyze cell cycle progression, cell size, gene expression, and other aspects of imaginal tissues. However, the lengthy dissociation protocols employed may alter gene expression, cell behavior and overall viability. Here we describe a new rapid and gentle method of dissociating the cells of wing imaginal discs that significantly enhances cell viability and reduces the likelihood of gene expression changes.

View Article and Find Full Text PDF

Although tissue regeneration has been studied in a variety of organisms, from Hydra to humans, many of the genes that regulate the ability of each animal to regenerate remain unknown. The larval imaginal discs of the genetically tractable model organism Drosophila melanogaster have complex patterning, well-characterized development and a high regenerative capacity, and are thus an excellent model system for studying mechanisms that regulate regeneration. To identify genes that are important for wound healing and tissue repair, we have carried out a genetic screen for mutations that impair regeneration in the wing imaginal disc.

View Article and Find Full Text PDF

Pax6 encodes a transcription factor with key roles in the development of the pancreas, central nervous system, and eye. Gene expression is orchestrated by several alternative promoters and enhancer elements that are distributed over several hundred kilobases. Here, we describe a reciprocal translocation, called 1Gso, which disrupts the integrity of transcripts arising from the 5'-most promoter, P0, and separates downstream promoters from enhancers active in pancreas and eye.

View Article and Find Full Text PDF