Neurosci Biobehav Rev
October 2022
The burgeoning field of neuroepigenetics has introduced chromatin modification as an important interface between experience and brain function. For example, epigenetic mechanisms like histone acetylation and DNA methylation operate throughout a lifetime to powerfully regulate gene expression in the brain that is required for experiences to be transformed into long-term memories. This review highlights emerging evidence from sensory models of memory that converge on the premise that epigenetic regulation of activity-dependent transcription in the sensory brain facilitates highly precise memory recall.
View Article and Find Full Text PDFEpigenetic mechanisms are key for regulating long-term memory (LTM) and are known to exert control on memory formation in multiple systems of the adult brain, including the sensory cortex. One epigenetic mechanism is chromatin modification by histone acetylation. Blocking the action of histone de-acetylases (HDACs) that normally negatively regulate LTM by repressing transcription has been shown to enable memory formation.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
April 2018
Electroencephalography (EEG) has become increasingly valuable outside of its traditional use in neurology. EEG is now used for neuropsychiatric diagnosis, neurological evaluation of traumatic brain injury, neurotherapy, gaming, neurofeedback, mindfulness, and cognitive enhancement training. The trend to increase the number of EEG electrodes, the development of novel analytical methods, and the availability of large data sets has created a data analysis challenge to find the "signal of interest" that conveys the most information about ongoing cognitive effort.
View Article and Find Full Text PDFJ Int Neuropsychol Soc
November 2015
The effects of acute aerobic exercise on cognitive functions in humans have been the subject of much investigation; however, these studies are limited by several factors, including a lack of randomized controlled designs, focus on only a single cognitive function, and testing during or shortly after exercise. Using a randomized controlled design, the present study asked how a single bout of aerobic exercise affects a range of frontal- and medial temporal lobe-dependent cognitive functions and how long these effects last. We randomly assigned 85 subjects to either a vigorous intensity acute aerobic exercise group or a video watching control group.
View Article and Find Full Text PDFBackground: Physical exercise has been proven to be an effective method for improving cognition and mood, but little is known about its benefits among individuals with traumatic brain injury.
Objective: This pilot study investigated the feasibility of a combined exercise and self-affirmation intervention (IntenSati) for enhancing cognition and mood in individuals with TBI. It was hypothesized that this intervention would improve individuals' cognition and mood following the completion of the program.