Background: Acute respiratory distress syndrome (ARDS) is associated with high mortality rates. ARDS patients suffer from severe hypoxemia, and extracorporeal membrane oxygenation (ECMO) therapy may be necessary to ensure oxygenation. ARDS has various etiologies, including trauma, ischemia-reperfusion injury or infections of various origins, and the associated immunological responses may vary.
View Article and Find Full Text PDFObjective: To investigate the capacity of ADAM15, a disintegrin metalloproteinase that is up-regulated in osteoarthritic (OA) cartilage, to protect chondrocytes against apoptosis induced by growth factor deprivation and genotoxic stress.
Methods: Caspase 3/7 activity was determined in primary OA and ADAM15-transfected T/C28a4 chondrocytes upon exposure to the DNA-damaging agent camptothecin or serum withdrawal. Camptothecin-induced cytotoxicity was determined by measuring cellular ATP content.
ADAM15 belongs to a family of transmembrane multi-domain proteins implicated in proteolysis, cell-cell and cell-matrix interactions in various disease conditions. In osteoarthritis (OA), ADAM15 is up-regulated in the chondrocytes already at early stages of cartilage degeneration where it seems to exert homeostatic effects likely associated with its ability to enhance integrin-mediated chondrocyte adhesion to the surrounding collagen matrix. The aim of our present study was, therefore, to characterize functional domains of ADAM15 involved in collagen II (CII) interaction and to analyse associated outside-in signalling events.
View Article and Find Full Text PDF