Publications by authors named "Andrea Scarciglia"

Functional magnetic resonance imaging (fMRI) is a powerful non-invasive method for studying brain function by analyzing blood oxygenation level-dependent (BOLD) signals. These signals arise from intricate interplays of deterministic and stochastic biological elements. Quantifying the stochastic part is challenging due to its reliance on assumptions about the deterministic segment.

View Article and Find Full Text PDF

The cardiovascular system can be analyzed using spectral, nonlinear, and complexity metrics. Nevertheless, dynamical noise may significantly impact these quantifiers. To our knowledge, there has been no attempt to quantify the intrinsic cardiovascular system noise driving heartbeat dynamics.

View Article and Find Full Text PDF

Background: Nonlinear physiological systems exhibit complex dynamics driven by intrinsic dynamical noise. In cases where there is no specific knowledge or assumption about system dynamics, such as in physiological systems, it is not possible to formally estimate noise.

Aim: We introduce a formal method to estimate the power of dynamical noise, referred to as physiological noise, in a closed form, without specific knowledge of the system dynamics.

View Article and Find Full Text PDF

Several approaches for estimating complexity in physiological time series at various time scales have recently been developed, with a special focus on heart rate variability (HRV) series. While numerous multiscale complexity quantifiers have been investigated, a multiscale Kolmogorov-Sinai (K-S) entropy for the characterization of cardiovascular dynamics still has to be properly assessed. In this pilot study, we investigate the Algorithmic Information Content, which is calculated using an effective compression algorithm, to quantify multiscale partition- based K-S entropy on experimental HRV series.

View Article and Find Full Text PDF

Background: Several methods have been proposed to estimate complexity in physiological time series observed at different time scales, with a particular focus on heart rate variability (HRV) series. In this frame, while several complexity quantifiers defined in the multiscale domain have already been investigated, the effectiveness of a multiscale Kolmogorov-Sinai (K-S) entropy has not been evaluated yet for the characterization of heartbeat dynamics.

Methods: The use of the algorithmic information content, which is estimated through an effective compression algorithm, is investigated to quantify multiscale partition-based K-S entropy on publicly available experimental HRV series gathered from young and elderly subjects undergoing a visual elicitation task (Fantasia).

View Article and Find Full Text PDF

In the last decades, a considerable effort has been devoted to quantify complexity in physiological time series, with a particular focus on heart rate variability (HRV). To this end, exemplary quantifiers including Approximate Entropy and Sample Entropy have successfully been applied by leveraging on statistical approximation and further parametrization through the definition of tolerance and embedding dimension, among others. In this study, we investigate the use of the Algorithmic Information Content, which is estimated through an effective compression algorithm, to quantify partition-based Kolmogorov-Sinai (K-S) entropy on HRV series.

View Article and Find Full Text PDF