Pharmaceuticals can be considered a global threat to aquatic ecosystems due to their pseudo-persistence and their potential toxicity towards non-target species. Amoxicillin (AMX) and carbamazepine (CBZ) and their mixture (1:1) were investigated on the marine copepod Tigriopus fulvus (Fischer, 1860) considering both acute and chronic endpoints. While acute and chronic exposure did not directly affect survival, reproductive endpoints were affected like the mean egg hatching time that was significantly longer than the negative control for treatments with AMX (0.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2022
Microplastic debris from direct and indirect human activities is considered a major threat to the marine biodiversity mainly due to its abundance, durability, persistence, and ability to accumulate contaminants from the environment. Derelict tubular plastic nets of various colours (blue (BN), yellow (YN), green (GN), pink (PN), and white (WN) net), used to distinguish mussel farming owners, were collected by scuba-dive from the Mar Piccolo of Taranto (Ionian Sea). All nets were made of polypropylene.
View Article and Find Full Text PDFGlyphosate-based formulations are the most commonly used herbicides worldwide with the risk of potential contamination of aquatic bodies. The present study assessed the response of four marine crustaceans to three different brands of herbicides Roundup®Platinum, Efesto® and Taifun® MK CL.T, under two selected temperatures of 20 °C and 30 °C.
View Article and Find Full Text PDFPoly(N-isopropylacrylamide) (PNIPAM) hydrogel microparticles with different core-shell morphologies have been designed, while maintaining an unvaried chemical composition: a morphology with (i) an un-crosslinked core with a crosslinked shell of PNIPAM chains and (ii) PNIPAM chains crosslinked to form the core with a shell consisting of tethered un-crosslinked PNIPAM chains to the core. Both morphologies with two different degrees of crosslinking have been assessed by confocal microscopy and tested with respect to their temperature responsivity and deformation by applying an osmotic stress. The thermal and mechanical behavior of these architectures have been framed within a Flory-Rehner modified model in order to describe the microgel volume shrinking occurring as response to a temperature increase or an osmotic perturbation.
View Article and Find Full Text PDF