Publications by authors named "Andrea Rothman"

From a repertoire of approximately 2000 odorant receptor (OR) alleles in the mouse genome, a mature olfactory sensory neuron (OSN) is thought to choose only one functional allele of one OR gene for expression. OSNs that express a given OR gene are scattered throughout an epithelial region that is gene specific. The DNA sequences that enable OR gene choice and specify the epithelial pattern are not known.

View Article and Find Full Text PDF

An olfactory sensory neuron (OSN) expresses selectively one member from a repertoire of approximately 1000 odorant receptor (OR) genes and projects its axon to a specific glomerulus in the olfactory bulb. Both processes are here recapitulated by MOR23 and M71 OR minigenes, introduced into mice. Minigenes of 9 kb and as short as 2.

View Article and Find Full Text PDF

Seven-transmembrane-domain proteins encoded by the vomeronasal receptor V1r and V2r gene superfamilies, and expressed by vomeronasal sensory neurons, are believed to be pheromone receptors in rodents. Four V1r gene families have been described in the mouse (V1ra, V1rb, V1rc and V3r). Here we have screened near-complete mouse genomic databases to obtain a first global draft of the mouse V1r repertoire, including 104 new V1r genes.

View Article and Find Full Text PDF

We have previously shown that the activity of NhaA is regulated by pH and found mutations that affect dramatically the pH dependence of the rate but not the K(m) (for Na(+) and Li(+)) of NhaA. In the present work, we found that helix IV is involved both in ion translocation as well as in pH regulation of NhaA. Two novel types of NhaA mutants were found clustered in trans membrane segment (TMS) IV: One type (D133C, T132C, and P129L) affects the apparent K(m) of NhaA to the cations with no significant effect on the pH profile of the antiporter; no shift of the pH profile was found when the activity of these mutants was measured at saturating Na(+) concentration.

View Article and Find Full Text PDF