Publications by authors named "Andrea Rocker"

Antibiotic resistance is driven by selection, but the degree to which a bacterial strain's evolutionary history shapes the mechanism and strength of resistance remains an open question. Here, we reconstruct the genetic and evolutionary mechanisms of carbapenem resistance in a clinical isolate of . A combination of short- and long-read sequencing, machine learning, and genetic and enzymatic analyses established that this carbapenem-resistant strain carries no carbapenemase-encoding genes.

View Article and Find Full Text PDF

Intestinal inflammation fuels the transmission of Salmonella Typhimurium (S.Tm). However, a substantial fitness cost is associated with virulence expression.

View Article and Find Full Text PDF

Virulence gene expression can represent a substantial fitness cost to pathogenic bacteria. In the model entero-pathogen Salmonella Typhimurium (S.Tm), such cost favors emergence of attenuated variants during infections that harbor mutations in transcriptional activators of virulence genes (e.

View Article and Find Full Text PDF

The ability of gut bacterial pathogens to escape immunity by antigenic variation-particularly via changes to surface-exposed antigens-is a major barrier to immune clearance. However, not all variants are equally fit in all environments. It should therefore be possible to exploit such immune escape mechanisms to direct an evolutionary trade-off.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) continues to evolve as a major threat to human health, and new strategies are required for the treatment of AMR infections. Bacteriophages (phages) that kill bacterial pathogens are being identified for use in phage therapies, with the intention to apply these bactericidal viruses directly into the infection sites in bespoke phage cocktails. Despite the great unsampled phage diversity for this purpose, an issue hampering the roll out of phage therapy is the poor quality annotation of many of the phage genomes, particularly for those from infrequently sampled environmental sources.

View Article and Find Full Text PDF

During March 2017, a neonatal patient with severe diarrhoea subsequently developed septicaemia and died, with isolated as the causative microorganism. In keeping with infection control protocols, the coincident illness of an attending staff member and three other neonates with infection triggered an outbreak response, leading to microbiological assessment of isolates collected from the staff member and all 21 co-housed neonates. Multilocus sequence typing and genomic sequencing identified that the isolates from the 21 neonates were of a new sequence type, ST2727, and taxonomically belonged to subsp.

View Article and Find Full Text PDF

In Gram-negative bacteria, the permeability of the outer membrane governs rates of antibiotic uptake and thus the efficacy of antimicrobial treatment. Hydrophilic drugs like β-lactam antibiotics depend on diffusion through pore-forming outer membrane proteins to reach their intracellular targets. In this study, we investigated the distribution of porin genes in more than 2,700 isolates and found a widespread loss of OmpK35 functionality, particularly in those strains isolated from clinical environments.

View Article and Find Full Text PDF

Purpose: To investigate transitions in resistance mechanisms, virulence characteristics and molecular epidemiology of carbapenem-resistant (CRKP) during 2003-2016 in a major Eastern Chinese medical center.

Patients And Methods: From a total of 2299 clinical strains collected from 2003 to 2016, 214 were found to be CRKP isolates and were selected for further study. Characterization of these was conducted by molecular detection of antibiotic resistance markers and virulence determinants, modified carbapenem inactivation method and multilocus sequence typing (MLST).

View Article and Find Full Text PDF

Carbapenem-resistant, hypervirulent (CR-hvKP) has recently emerged as a significant threat to public health. In this study, 29 isolates were isolated from eight patients admitted to the intensive care unit (ICU) of a comprehensive teaching hospital located in China from March 2017 to January 2018. Clinical information of patients was the basis for the further analyses of the isolates including antimicrobial susceptibility tests, identification of antibiotic resistance and virulence gene determinants, multilocus sequence typing (MLST), -macrorestriction by pulsed-field gel electrophoresis (PFGE).

View Article and Find Full Text PDF

Bacterial toxin-antitoxin complexes are emerging as key players modulating bacterial physiology as activation of toxins induces stasis or programmed cell death by interference with vital cellular processes. Zeta toxins, which are prevalent in many bacterial genomes, were shown to interfere with cell wall formation by perturbing peptidoglycan synthesis in Gram-positive bacteria. Here, we characterize the epsilon/zeta toxin-antitoxin (TA) homologue from the Gram-negative pathogen Neisseria gonorrhoeae termed ng_ɛ1 / ng_ζ1.

View Article and Find Full Text PDF

Motivation: Many Gram-negative bacteria use type VI secretion systems (T6SS) to export effector proteins into adjacent target cells. These secreted effectors (T6SEs) play vital roles in the competitive survival in bacterial populations, as well as pathogenesis of bacteria. Although various computational analyses have been previously applied to identify effectors secreted by certain bacterial species, there is no universal method available to accurately predict T6SS effector proteins from the growing tide of bacterial genome sequence data.

View Article and Find Full Text PDF

An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3'-hydroxyl group.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) modules regulate metabolism and viability of bacteria and archaea. In type II TA systems these functions are generally thought to be performed by two small proteins. However, evidence is increasing that the toxins are much more diverse and can form multi-domain proteins.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) systems are widespread genetic modules in the genomes of bacteria and archaea emerging as key players that modulate bacterial physiology. They consist of two parts, a toxic component that blocks an essential cellular process and an antitoxin that inhibits this toxic activity during normal growth. According to the nature of the antitoxin and the mode of inhibition, TA systems are subdivided into different types.

View Article and Find Full Text PDF

X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval.

View Article and Find Full Text PDF

X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells.

View Article and Find Full Text PDF

Nucleosomes are multi-component macromolecular assemblies which present a formidable obstacle to enzymatic activities that require access to the DNA, e.g. DNA and RNA polymerases.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfill0jsf0os5mjkgl6754moqo09cause): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once