The number of parameters describing a quantum state is well known to grow exponentially with the number of particles. This scaling limits our ability to characterize and simulate the evolution of arbitrary states to systems, with no more than a few qubits. However, from a computational learning theory perspective, it can be shown that quantum states can be approximately learned using a number of measurements growing linearly with the number of qubits.
View Article and Find Full Text PDFRecently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts.
View Article and Find Full Text PDFIn a recent paper, Lechner, Hauke, and Zoller (LHZ) described a means to translate a Hamiltonian of spin-/ particles with "all-to-all" interactions into a larger physical lattice with only on-site energies and local parity constraints. LHZ used this mapping to propose a novel form of quantum annealing. We provide a stabilizer-based formulation within which we can describe both this prior approach and a wide variety of variants.
View Article and Find Full Text PDF