Precipitation patterns are critical for understanding the hydrological and climatological dynamics of any region. Sicily, the largest island in the Mediterranean sea, with its diverse topography and climatic conditions, serves as an ideal case study for analyzing precipitation data, to gain insights into regional water resources, agricultural productivity, and climate change impacts. This paper employs advanced statistical physics methods, particularly Tsallis -statistics, to analyze sub-hourly precipitation data from 2002 to 2023, provided by the Sicilian Agrometeorological Informative System (SIAS).
View Article and Find Full Text PDFWe propose a new statistical analysis of the Acoustic Emissions (AE) produced in a series of triaxial deformation experiments leading to fractures and failure of two different rocks, namely, Darley Dale Sandstone (DDS) and AG Granite (AG). By means of q-statistical formalism, we are able to characterize the pre-failure processes in both types of rocks. In particular, we study AE inter-event time and AE inter-event distance distributions.
View Article and Find Full Text PDFIn this paper we analyse the effects of information flows in cryptocurrency markets. We first define a cryptocurrency trading network, i.e.
View Article and Find Full Text PDFIt is a widespread belief that success is mainly due to innate qualities rather than external forces. This is particularly true in sports competitions, where individual talent is usually considered the main, if not the only, ingredient to reach success. In this study, we explore the limits of this belief by quantifying the relative weight of talent and chance in fencing, a combat sport involving a weapon, with the help of both real data and agent-based simulations.
View Article and Find Full Text PDFAlthough interdisciplinarity is often touted as a necessity for modern research, the evidence on the relative impact of sectorial versus to interdisciplinary science is qualitative at best. In this paper we leverage the bibliographic data set of the American Physical Society to quantify the role of interdisciplinarity in physics, and that of talent and luck in achieving success in scientific careers. We analyze a period of 30 years (1980-2009) tagging papers and their authors by means of the Physics and Astronomy Classification Scheme (PACS), to show that some degree of interdisciplinarity is quite helpful to reach success, measured as a proxy of either the number of articles or the citations score.
View Article and Find Full Text PDFAn entropic functional is said if it satisfies, for any two probabilistically independent systems and , that S ( A + B ) = S ( A ) + S ( B ) [...
View Article and Find Full Text PDFWe present a graph-theoretic model of consumer choice, where final decisions are shown to be influenced by information and knowledge, in the form of individual awareness, discriminating ability, and perception of market structure. Building upon the distance-based Hotelling's differentiation idea, we describe the behavioral experience of several prototypes of consumers, who walk a hypothetical cognitive path in an attempt to maximize their satisfaction. Our simulations show that even consumers endowed with a small amount of information and knowledge may reach a very high level of utility.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2015
We present a financial market model, characterized by self-organized criticality, that is able to generate endogenously a realistic price dynamics and to reproduce well-known stylized facts. We consider a community of heterogeneous traders, composed by chartists and fundamentalists, and focus on the role of informative pressure on market participants, showing how the spreading of information, based on a realistic imitative behavior, drives contagion and causes market fragility. In this model imitation is not intended as a change in the agent's group of origin, but is referred only to the price formation process.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2013
Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy.
View Article and Find Full Text PDFIn this paper we explore the specific role of randomness in financial markets, inspired by the beneficial role of noise in many physical systems and in previous applications to complex socio-economic systems. After a short introduction, we study the performance of some of the most used trading strategies in predicting the dynamics of financial markets for different international stock exchange indexes, with the goal of comparing them to the performance of a completely random strategy. In this respect, historical data for FTSE-UK, FTSE-MIB, DAX, and S & P500 indexes are taken into account for a period of about 15-20 years (since their creation until today).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2013
We study the effect of a weak random additive noise in a linear chain of N locally coupled logistic maps at the edge of chaos. Maps tend to synchronize for a strong enough coupling, but if a weak noise is added, very intermittent fluctuations in the returns time series are observed. This intermittency tends to disappear when noise is increased.
View Article and Find Full Text PDFWe study the relaxation dynamics of a Hamiltonian system of N fully coupled XY spins. The thermodynamics of the system predicts a ferromagnetic and a paramagnetic phase. Starting from out-of-equilibrium initial conditions, the dynamics at constant energy drives the system into quasistationary states (QSSs) characterized by dynamical frustration.
View Article and Find Full Text PDFWe study the statistical properties of time distribution of seismicity in California by means of a new method of analysis, the diffusion entropy. We find that the distribution of time intervals between a large earthquake (the main shock of a given seismic sequence) and the next one does not obey Poisson statistics, as assumed by the current models. We prove that this distribution is an inverse power law with an exponent mu=2.
View Article and Find Full Text PDF