Publications by authors named "Andrea R Watson"

Despite the fundamental role of bacterial strain variation in gut microbiota function, the number of unique strains of a species that can stably colonize the human intestine is still unknown for almost all species. Here we determine the strain richness (SR) of common gut species using thousands of sequenced bacterial isolates with paired metagenomes. We show that SR varies across species, is transferable by faecal microbiota transplantation, and is uniquely low in the gut compared with soil and lake environments.

View Article and Find Full Text PDF
Article Synopsis
  • This study assessed the impact of fecal microbiota transplantation (FMT) on clearing carbapenemase-producing Enterobacterales (CPE) infections in patients.
  • A total of 20 patients were monitored, showing a 20% success rate for complete CPE clearance two weeks post-FMT and 40% at three months, with no significant differences when compared to a control group.
  • The analysis indicated that responder patients had a lower level of CPE before FMT and greater diversity in gut bacteria afterwards, suggesting that specific bacterial species may play a role in the success of the treatment.
View Article and Find Full Text PDF

A wide variety of human diseases are associated with loss of microbial diversity in the human gut, inspiring a great interest in the diagnostic or therapeutic potential of the microbiota. However, the ecological forces that drive diversity reduction in disease states remain unclear, rendering it difficult to ascertain the role of the microbiota in disease emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity is diminished as disease states select for microbial populations that are more fit to survive environmental stress caused by inflammation or other host factors.

View Article and Find Full Text PDF

Background: Changes in microbial community composition as a function of human health and disease states have sparked remarkable interest in the human gut microbiome. However, establishing reproducible insights into the determinants of microbial succession in disease has been a formidable challenge.

Results: Here we use fecal microbiota transplantation (FMT) as an in natura experimental model to investigate the association between metabolic independence and resilience in stressed gut environments.

View Article and Find Full Text PDF

Background And Aims: Exclusive enteral nutrition [EEN] is a dietary intervention to induce clinical remission in children with active luminal Crohn's disease [CD]. While changes in the gut microbial communities have been implicated in achieving this remission, a precise understanding of the role of microbial ecology in the restoration of gut homeostasis is lacking.

Methods: Here we reconstructed genomes from the gut metagenomes of 12 paediatric subjects who were sampled before, during and after EEN.

View Article and Find Full Text PDF

Eukaryotic organisms evolved in a microbial world and often have intimate associations with diverse bacterial groups. Kelp, brown macroalgae in the order , play a vital role in coastal ecosystems, yet we know little about the functional role of the microbial symbionts that cover their photosynthetic surfaces. Here, we reconstructed 79 bacterial metagenome-assembled genomes (MAGs) from blades of the bull kelp, Nereocystis luetkeana, allowing us to determine their metabolic potential and functional roles.

View Article and Find Full Text PDF

Manipulation of the gut microbiota via fecal microbiota transplantation (FMT) has shown clinical promise in diseases such as recurrent Clostridioides difficile infection (rCDI). However, the variable nature of this approach makes it challenging to describe the relationship between fecal strain colonization, corresponding microbiota changes, and clinical efficacy. Live biotherapeutic products (LBPs) consisting of defined consortia of clonal bacterial isolates have been proposed as an alternative therapeutic class because of their promising preclinical results and safety profile.

View Article and Find Full Text PDF

Big data abound in microbiology, but the workflows designed to enable researchers to interpret data can constrain the biological questions that can be asked. Five years after anvi’o was first published, this community-led multi-omics platform is maturing into an open software ecosystem that reduces constraints in ‘omics data analyses.

View Article and Find Full Text PDF

Introduction: Microbial residents of the human oral cavity have long been a major focus of microbiology due to their influence on host health and intriguing patterns of site specificity amidst the lack of dispersal limitation. However, the determinants of niche partitioning in this habitat are yet to be fully understood, especially among taxa that belong to recently discovered branches of microbial life.

Results: Here, we assemble metagenomes from tongue and dental plaque samples from multiple individuals and reconstruct 790 non-redundant genomes, 43 of which resolve to TM7, a member of the Candidate Phyla Radiation, forming six monophyletic clades that distinctly associate with either plaque or tongue.

View Article and Find Full Text PDF

Traditional cultivation approaches in microbiology are labor-intensive, low-throughput, and yield biased sampling of environmental microbes due to ecological and evolutionary factors. New strategies are needed for ample representation of rare taxa and slow-growers that are often outcompeted by fast-growers in cultivation experiments. Here we describe a microfluidic platform that anaerobically isolates and cultivates microbial cells in millions of picoliter droplets and automatically sorts them based on colony density to enhance slow-growing organisms.

View Article and Find Full Text PDF

IgA is prominently secreted at mucosal surfaces and coats a fraction of the commensal microbiota, a process that is critical for intestinal homeostasis. However, the mechanisms of IgA induction and the molecular targets of these antibodies remain poorly understood, particularly in humans. Here, we demonstrate that microbiota from a subset of human individuals encode two protein "superantigens" expressed on the surface of commensal bacteria of the family Lachnospiraceae such as that bind IgA variable regions and stimulate potent IgA responses in mice.

View Article and Find Full Text PDF

Wolbachia is a genus of obligate intracellular bacteria found in nematodes and arthropods worldwide, including insect vectors that transmit dengue, West Nile, and Zika viruses. Wolbachia's unique ability to alter host reproductive behavior through its temperate bacteriophage WO has enabled the development of new vector control strategies. However, our understanding of Wolbachia's mobilome beyond its bacteriophages is incomplete.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2m1fj58t3utfi2n90042hb6tt6ia1f46): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once