There is an increasing interest in the intestinal microbiota as a critical regulator of the development and function of the immune, nervous, and endocrine systems. Experimental work in animal models has provided the foundation for clinical studies to investigate associations between microbiota composition and function and human disease, including multiple sclerosis (MS). Initial work done using an animal model of brain inflammation, experimental autoimmune encephalomyelitis (EAE), suggests the existence of a microbiota-gut-brain axis connection in the context of MS, and microbiome sequence analyses reveal increases and decreases of microbial taxa in MS intestines.
View Article and Find Full Text PDFThe Helicobacter pyloricag pathogenicity island (cag PAI) encodes a type IV secretion system that is more commonly found in strains isolated from patients with gastroduodenal disease than from those with asymptomatic gastritis. Genome-wide organization of the transcriptional units in H. pylori strain 26695 was recently established using RNA sequence analysis (Sharma et al.
View Article and Find Full Text PDFThe human pathogen Helicobacter pylori employs a diverse collection of outer membrane proteins to colonize, persist, and drive disease within the acidic gastric environment. In this study, we sought to elucidate the function of the host-induced gene HP0289, which encodes an uncharacterized outer membrane protein. We first generated an isogenic H.
View Article and Find Full Text PDFHere we undertook to identify colonization and gastric disease-promoting factors of the human gastric pathogen Helicobacter pylori as genes that were induced in response to the stomach environment. Using recombination-based in vivo expression technology (RIVET), we identified six promoters induced in the host compared to laboratory conditions. Three of these promoters, designated Pivi10, Pivi66, and Pivi77, regulate genes that H.
View Article and Find Full Text PDFIn this study, we report experimental analysis of transcriptional terminators in the human pathogen Helicobacter pylori. Previous bioinformatics approaches came to differing conclusions regarding transcriptional termination in this bacterium. We used a reporter construct, the tnpR-encoded resolvase, to assess terminators.
View Article and Find Full Text PDFKinetochores mediate chromosome attachment to the mitotic spindle to ensure accurate chromosome segregation. Budding yeast is an excellent organism for kinetochore assembly studies because it has a simple defined centromere sequence responsible for the localization of >65 proteins. In addition, yeast is the only organism where a conditional centromere is available to allow studies of de novo kinetochore assembly.
View Article and Find Full Text PDFSaccharomyces cerevisiae MPS1 encodes an essential protein kinase that has roles in spindle pole body (SPB) duplication and the spindle checkpoint. Previously characterized MPS1 mutants fail in both functions, leading to aberrant DNA segregation with lethal consequences. Here, we report the identification of a unique conditional allele, mps1-8, that is defective in SPB duplication but not the spindle checkpoint.
View Article and Find Full Text PDF