Publications by authors named "Andrea Prodosmo"

Centrosomal p53 has been described for three decades but its role is still unclear. We previously reported that, in proliferating human cells, p53 transiently moves to centrosomes at each mitosis. Such p53 mitotic centrosome localization (p53-MCL) occurs independently from DNA damage but requires ATM-mediated p53Ser15 phosphorylation (p53Ser15) on discrete cytoplasmic p53 foci that, through MT dynamics, move to centrosomes during the mitotic spindle formation.

View Article and Find Full Text PDF

Background: Variant ATM heterozygotes have an increased risk of developing cancer, cardiovascular diseases, and diabetes. Costs and time of sequencing and ATM variant complexity make large-scale, general population screenings not cost-effective yet. Recently, we developed a straightforward, rapid, and inexpensive test based on p53 mitotic centrosomal localization (p53-MCL) in peripheral blood mononuclear cells (PBMCs) that diagnoses mutant ATM zygosity and recognizes tumor-associated ATM polymorphisms.

View Article and Find Full Text PDF

Background: Mutations in the TP53 (Tumour Protein 53) gene can lead to expression of mutant p53 proteins that accumulate in cancer cells and can induce circulating p53 antibodies in cancer patients. Our aim was to evaluate the presence and prognostic role of these antibodies in lung cancer patients and to investigate whether they were related to p53 expression or TP53 mutations in tumour tissues.

Methods: A total of 201 lung cancer patients were evaluated for p53 antibodies by ELISA (Enzyme-Linked Immunosorbent Assay) and control was obtained from 54 patients with non-malignant disorders; p53 expression was evaluated in 131 of the lung cancer patients by immunohistochemistry and TP53 mutations were then investigated in 53 tumours positively staining for p53 and in 12 tumours without p53 overexpression, whose DNA was available for direct sequencing.

View Article and Find Full Text PDF

Chromosome missegregation leads to chromosomal instability (CIN), thought to play a role in cancer development. As cohesin functions in guaranteeing correct chromosome segregation, increasing data suggest its involvement in tumorigenesis. In a screen of a large series of early colorectal adenomas, a precocious step during colorectal tumorigenesis, we identified 11 mutations in SMC1A core cohesin subunit.

View Article and Find Full Text PDF

Background: Mutations in the DNA damage response (DDR) factors, breast cancer 1 (BRCA1) and BRCA2, sensitize tumor cells to poly(ADP-ribose) polymerase (PARP) inhibitors. The ataxia telangiectasia mutated (ATM) kinase is a key DDR protein whose heterozygous germline mutation is a moderate-risk factor for developing breast cancer. In this study, we examined whether ATM inactivation in breast cancer cell lines confers sensitivity to PARP inhibitors.

View Article and Find Full Text PDF

Ataxia-telangiectasia (A-T) is an autosomal recessive neurodegenerative disorder characterized by radiosensitivity, genomic instability, and predisposition to cancer. A-T is caused by biallelic mutations in the ataxia-telangiectasia mutated (ATM) gene, but heterozygous carriers, though apparently healthy, are believed to be at increased risk for cancer and more sensitive to ionizing radiation than the general population. Despite progress in functional and sequencing-based assays, no straightforward, rapid, and inexpensive test is available for the identification of A-T homozygotes and heterozygotes, which is essential for diagnosis, genetic counseling, and carrier prediction.

View Article and Find Full Text PDF

Background & Aims: Genetic studies indicate that distinct signaling modulators are each necessary but not individually sufficient for embryonic hepatocyte survival in vivo. Nevertheless, how signaling players are interconnected into functional circuits and how they coordinate the balance of cell survival and death in developing livers are still major unresolved issues. In the present study, we examined the modulation of the p53 pathway by HGF/Met in embryonic livers.

View Article and Find Full Text PDF

Failure in cytokinesis, the final step in cell division, by generating tetra- and polyploidization promotes chromosomal instability, a hallmark of cancer. Here we show that HIPK2, a kinase involved in cell fate decisions in development and response to stress, controls cytokinesis and prevents tetraploidization through its effects on histone H2B. HIPK2 binds and phosphorylates histone H2B at S14 (H2B-S14(P)), and the two proteins colocalize at the midbody.

View Article and Find Full Text PDF

MYCN amplification occurs in approximately 20% of human neuroblastomas and is associated with early tumor progression and poor outcome, despite intensive multimodal treatment. However, MYCN overexpression also sensitizes neuroblastoma cells to apoptosis. Thus, uncovering the molecular mechanisms linking MYCN to apoptosis might contribute to designing more efficient therapies for MYCN-amplified tumors.

View Article and Find Full Text PDF

In the past few years, much effort has been devoted to show the single-target specificity of nongenotoxic, p53 reactivating compounds. However, the divergent biological responses induced by the different compounds, even in the same tumor cells, demand additional mechanistic insights, whose knowledge may lead to improved drug design or selection of the most potent drug combinations. To address the molecular mechanism underlying induction of mitotic arrest versus clinically more desirable apoptosis, we took advantage of two MDM2 antagonists, Nutlin-3 and RITA, which respectively produce these two outcomes.

View Article and Find Full Text PDF

MDM4 is a key regulator of p53, whose biological activities depend on both transcriptional activity and transcription-independent mitochondrial functions. MDM4 binds to p53 and blocks its transcriptional activity; however, the main cytoplasmic localization of MDM4 might also imply a regulation of p53-mitochondrial function. Here, we show that MDM4 stably localizes at the mitochondria, in which it (i) binds BCL2, (ii) facilitates mitochondrial localization of p53 phosphorylated at Ser46 (p53Ser46(P)) and (iii) promotes binding between p53Ser46(P) and BCL2, release of cytochrome C and apoptosis.

View Article and Find Full Text PDF

Over the past decade several investigators have reported on the physical interaction of serine/threonine kinases of the homeodomain interacting-protein family (HIPKs) with increasing number of nuclear factors and on their localization in different nuclear sub-compartments. Although we are still far from a global understanding of the molecular consequences of HIPK subnuclear compartmentalization, the spatial description of particular interactions and posttranslational modifications promoted by these kinases on key cellular regulators might provide relevant insights. Here we will discuss the possible implications of the HIPK subnuclear localization in the regulation of gene transcription and in the cell response to stress.

View Article and Find Full Text PDF

A wild-type (wt) p53 gene characterizes thyroid tumors, except for the rare anaplastic histotype. Because p53 inactivation is a prerequisite for tumor development, alterations of p53 regulators represent an alternative way to impair p53 function. Indeed, murine double minute 2 (MDM2), the main p53 negative regulator, is overexpressed in many tumor histotypes including those of the thyroid.

View Article and Find Full Text PDF

Protein phosphorylation is a widely diffuse and versatile post-translational modification that controls many cellular processes, from signal transduction to gene transcription. The homeodomain-interacting protein kinases (HIPKs) belong to a new family of serine-threonine kinases first identified as corepressors for homeodomain transcription factors. Different screenings for the identification of new partners of transcription factors have indicated that HIPK2, the best characterized member of the HIPK family, is a multitalented coregulator of an increasing number of transcription factors and cofactors.

View Article and Find Full Text PDF

In response to DNA damage, p53 induces either cell-cycle arrest or apoptosis by differential transcription of several target genes and through transcription-independent apoptotic functions. p53 phosphorylation at Ser46 by HIPK2 is one determinant of the outcome because it takes place only upon severe, nonrepairable DNA damage that irreversibly drives cells to apoptosis. Here, we show that p53 represses its proapoptotic activator HIPK2 via MDM2-mediated degradation, whereas a degradation-resistant HIPK2 mutant has increased apoptotic activity.

View Article and Find Full Text PDF

The HDMX protein is closely related to HDM2 with which it shares different structural domains, particularly the p53 binding domain and the ring finger domain, where the two HDM proteins interact. Several oncogenic forms derived from splicing of HDM2 have been described in cancer. This work aimed at investigating whether analogous forms of HDMX exist in human tumors.

View Article and Find Full Text PDF