Although angiosperm plants generally react to immunity elicitors like chitin or chitosan by the cell wall callose deposition, this response in particular cell types, especially upon chitosan treatment, is not fully understood. Here we show that the growing root hairs (RHs) of Arabidopsis can respond to a mild (0.001%) chitosan treatment by the callose deposition and by a deceleration of the RH growth.
View Article and Find Full Text PDFThe pathogenesis-related 1 (PR1) proteins are members of the cross-kingdom conserved CAP superfamily (from Cysteine-rich secretory protein, Antigen 5, and PR1 proteins). PR1 mRNA expression is frequently used for biotic stress monitoring in plants; however, the molecular mechanisms of its cellular processing, localization, and function are still unknown. To analyse the localization and immunity features of Arabidopsis thaliana PR1, we employed transient expression in Nicotiana benthamiana of the tagged full-length PR1 construct, and also disrupted variants with C-terminal truncations or mutations.
View Article and Find Full Text PDFThe heterooctameric vesicle-tethering complex exocyst is important for plant development, growth, and immunity. Multiple paralogs exist for most subunits of this complex; especially the membrane-interacting subunit EXO70 underwent extensive amplification in land plants, suggesting functional specialization. Despite this specialization, most Arabidopsis mutants are viable and free of developmental defects, probably as a consequence of redundancy among isoforms.
View Article and Find Full Text PDFReactive oxygen species (ROS) generated by NADPH oxidase (NOX) are crucial for tip growth of pollen tubes. However, the regulation of NOX activity in pollen tubes remains unknown. Using purified plasma membrane fractions from tobacco and olive pollen and tobacco BY-2 cells, we demonstrate that pollen NOX is activated by calcium ions and low abundant signaling phospholipids, such as phosphatidic acid and phosphatidylinositol 4,5-bisphosphate in vitro and in vivo.
View Article and Find Full Text PDFEarly onset mitochondrial encephalo-cardiomyopathy due to isolated deficiency of ATP synthase is frequently caused by mutations in TMEM70 gene encoding enzyme-specific ancillary factor. Diminished ATP synthase results in low ATP production, elevated mitochondrial membrane potential and increased ROS production. To test whether the patient cells may react to metabolic disbalance by changes in oxidative phosphorylation system, we performed a quantitative analysis of respiratory chain complexes and intramitochondrial proteases involved in their turnover.
View Article and Find Full Text PDFBackground: To strengthen research and differential diagnostics of mitochondrial disorders, we constructed and validated an oligonucleotide microarray (h-MitoArray) allowing expression analysis of 1632 human genes involved in mitochondrial biology, cell cycle regulation, signal transduction and apoptosis. Using h-MitoArray we analyzed gene expression profiles in 9 control and 13 fibroblast cell lines from patients with F1Fo ATP synthase deficiency consisting of 2 patients with mt9205deltaTA microdeletion and a genetically heterogeneous group of 11 patients with not yet characterized nuclear defects. Analysing gene expression profiles, we attempted to classify patients into expected defect specific subgroups, and subsequently reveal group specific compensatory changes, identify potential phenotype causing pathways and define candidate disease causing genes.
View Article and Find Full Text PDF