Background And Aims: Assessing adaptive genetic variation and its spatial distribution is crucial to conserve forest genetic resources and manage species' adaptive potential. Macro-environmental gradients commonly exert divergent selective pressures that enhance adaptive genetic divergence among populations. Steep micro-environmental variation might also result in adaptive divergence at finer spatial scales, even under high gene flow, but it is unclear how often this is the case.
View Article and Find Full Text PDFMost tree species underwent cycles of contraction and expansion during the Quaternary. These cycles led to an ancient and complex genetic structure that has since been affected by extensive gene flow and by strong local adaptation. The extent to which hybridization played a role in this multi-layered genetic structure is important to be investigated.
View Article and Find Full Text PDFPremise: Dominant in many ecosystems around the world, clonal plants can reach considerable ages and sizes. Due to their modular growth patterns, individual clonal plants (genets) can consist of many subunits (ramets). Since single ramets do not reflect the actual age of genets, the ratio between genet size (radius) and longitudinal annual growth rate (LAGR) of living ramets is often used to approximate the age of clonal plants.
View Article and Find Full Text PDFHigh genetic variation and extensive gene flow may help forest trees with adapting to ongoing climate change, yet the genetic bases underlying their adaptive potential remain largely unknown. We investigated range-wide patterns of potentially adaptive genetic variation in 64 populations of European beech (Fagus sylvatica L.) using 270 SNPs from 139 candidate genes involved either in phenology or in stress responses.
View Article and Find Full Text PDFVariation in genetic diversity across species ranges has long been recognized as highly informative for assessing populations' resilience and adaptive potential. The spatial distribution of genetic diversity within populations, referred to as fine-scale spatial genetic structure (FSGS), also carries information about recent demographic changes, yet it has rarely been connected to range scale processes. We studied eight silver fir (Abies alba Mill.
View Article and Find Full Text PDFComplementary gene-resequencing and transcriptomic approaches reveal contrasted evolutionary histories in a species complex. Pinus halepensis and Pinus brutia are closely related species that can intercross, but occupy different geographical ranges and bioclimates. To study the evolution of this species complex and to provide genomic resources for further research, we produce and analyze two new complementary sets of genetic resources: (i) a set of 172 re-sequenced genomic target loci analyzed in 45 individuals, and (ii) a set of 11 transcriptome assemblies.
View Article and Find Full Text PDFBackground: Progress in the field of evolutionary forest ecology has been hampered by the huge challenge of phenotyping trees across their ranges in their natural environments, and the limitation in high-resolution environmental information.
Findings: The GenTree Platform contains phenotypic and environmental data from 4,959 trees from 12 ecologically and economically important European forest tree species: Abies alba Mill. (silver fir), Betula pendula Roth.
The quantitative assessment of wood anatomical traits offers important insights into those factors that shape tree growth. While it is known that conduit diameter, cell wall thickness, and wood density vary substantially between and within species, the interconnection between wood anatomical traits, tree-ring width, tree height and age, as well as environment effects on wood anatomy remain unclear. Here, we measure and derived 65 wood anatomical traits in cross-sections of the five outermost tree rings (2008-2012) of 30 Norway spruce [ (L.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFQuantifying the individual reproductive success and understanding its determinants is a central issue in evolutionary research for the major consequences that the transmission of genetic variation from parents to offspring has on the adaptive potential of populations. Here, we propose to distil the myriad of information embedded in tree-ring time series into a set of tree-ring-based phenotypic traits to be investigated as potential drivers of reproductive success in forest trees. By using a cross-disciplinary approach that combines parentage analysis and a thorough dendrophenotypic characterisation of putative parents, we assessed sex-specific relationships between such dendrophenotypic traits (i.
View Article and Find Full Text PDFThe dataset presented here was collected by the GenTree project (EU-Horizon 2020), which aims to improve the use of forest genetic resources across Europe by better understanding how trees adapt to their local environment. This dataset of individual tree-core characteristics including ring-width series and whole-core wood density was collected for seven ecologically and economically important European tree species: silver birch (Betula pendula), European beech (Fagus sylvatica), Norway spruce (Picea abies), European black poplar (Populus nigra), maritime pine (Pinus pinaster), Scots pine (Pinus sylvestris), and sessile oak (Quercus petraea). Tree-ring width measurements were obtained from 3600 trees in 142 populations and whole-core wood density was measured for 3098 trees in 125 populations.
View Article and Find Full Text PDFFinding outlier loci underlying local adaptation is challenging and is best approached by suitable sampling design and rigorous method selection. In this study, we aimed to detect outlier loci (single nucleotide polymorphisms, SNPs) at the local scale by using Aleppo pine (), a drought resistant conifer that has colonized many habitats in the Mediterranean Basin, as the model species. We used a nested sampling approach that considered replicated altitudinal gradients for three contrasting sites.
View Article and Find Full Text PDFPremise: Recent habitat fragmentation is posing a risk to the wavy-leaved smokebush, (Proteaceae), a rare plant species endemic to southwestern Western Australia. Microsatellite markers are required to characterize the genetic diversity and structure of the species for conservation purposes and to facilitate ecological studies.
Methods And Results: Illumina MiSeq high-throughput sequencing was used to develop 20 novel microsatellite markers for .
Cambial growth is a phenotypic trait influenced by various physiological processes, numerous biotic and abiotic drivers, as well as by the genetic background. By archiving the outcome of such complex interplay, tree-rings are an exceptional resource for addressing individual long-term growth responses to changing environments and climate. Disentangling the effects of the different drivers of tree growth, however, remains challenging because of the lack of multidisciplinary data.
View Article and Find Full Text PDFMediterranean forests are fragile ecosystems vulnerable to recent global warming and reduction of precipitation, and a long-term negative effect is expected on vegetation with increasing drought and in areas burnt by fires. We investigated the spatial distribution of genetic variation of Arbutus unedo in the western Iberia Peninsula, using plastid markers with conservation and provenance regions design purposes. This species is currently undergoing an intense domestication process in the region, and, like other species, is increasingly under the threat from climate change, habitat fragmentation and wildfires.
View Article and Find Full Text PDFBackground: Local adaptation is a key driver of phenotypic and genetic divergence at loci responsible for adaptive traits variations in forest tree populations. Its experimental assessment requires rigorous sampling strategies such as those involving population pairs replicated across broad spatial scales.
Methods: A hierarchical Bayesian model of selection (HBM) that explicitly considers both the replication of the environmental contrast and the hierarchical genetic structure among replicated study sites is introduced.
The fine-scale assessment of both spatially and non-spatially distributed genetic variation is crucial to preserve forest genetic resources through appropriate forest management. Cryptic within-population genetic structure may be more common than previously thought in forest tree populations, which has strong implications for the potential of forests to adapt to environmental change. The present study was aimed at comparing within-population genetic structure in European beech (Fagus sylvatica L.
View Article and Find Full Text PDFFragmentation can affect the demographic and genetic structure of populations near the boundary of their biogeographic range. Higher genetic differentiation among populations coupled with lower level of within-population variability is expected as a consequence of reduced population size and isolation. The effects of these 2 factors have been rarely disentangled.
View Article and Find Full Text PDF