Background: Heart disease progression occurs in 30% of patients with chronic Trypanosoma cruzi infection. Supplementation with selenium (Se) in animal model of T. cruzi infection produced promising results.
View Article and Find Full Text PDFChagas disease, caused by Trypanosoma cruzi, is an important public health problem in Latin America. Disturbances in gastrointestinal motility are observed in 15-20% of patients at the chronic phase. We previously observed a decrease in intestinal motility in mice infected with Y strain from T.
View Article and Find Full Text PDFInfection with Trypanosoma cruzi causes megasyndromes of the gastrointestinal (GI) tract in humans and animals. In the present study, we employed magnetic resonance imaging to non-invasively monitor the effect of selenium supplementation on alterations in the GI tract of T. cruzi-infected mice.
View Article and Find Full Text PDFChagas disease, caused by the protozoan Trypanosoma cruzi, remains a serious public health problem in Latin America. In relation to digestive problems, 4.5% of patients show mega syndromes (megacolon) in the chronic phase.
View Article and Find Full Text PDFCaveolin-1 and caveolin-3 are expressed in the mammalian heart. Mice deficient in caveolin 1 or 3 exhibit cardiac abnormalities including left ventricular hypertrophy and reduced fractional shortening. Cardiac imaging technologies such as transthoracic echocardiography and cardiac-gated magnetic resonance imaging (MRI) are effective tools for the study of left ventricular morphology and function in mice; however, there has not been widespread use of these technologies in studies of right ventricular morphology.
View Article and Find Full Text PDFMicronutrient deficiencies and infectious disease often coexist and show complex interactions leading to mutually reinforced detrimental clinical effects. Such a combination is predominantly observed in underprivileged people of developing countries, particularly in rural regions. Several micronutrients such as trace elements (zinc, iron, selenium) modulate immune function and influence the susceptibility of the host to infection.
View Article and Find Full Text PDFRecently, development of a caveolin-1-deficient (Cav-1 null) mouse model has allowed the detailed analysis of caveolin-1's function in the context of a whole animal. Interestingly, we now report that the hearts of Cav-1 null mice are markedly abnormal, despite the fact that caveolin-1 is not expressed in cardiac myocytes. However, caveolin-1 is abundantly expressed in the nonmyocytic cells of the heart, i.
View Article and Find Full Text PDF