Philos Trans A Math Phys Eng Sci
July 2020
A double-distribution-function based lattice Boltzmann method (DDF-LBM) is proposed for the simulation of polyatomic gases in the supersonic regime. The model relies on a numerical equilibrium that has been extensively used by discrete velocity methods since the late 1990s. Here, it is extended to reproduce an arbitrary number of moments of the Maxwell-Boltzmann distribution.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
February 2019
Only a small fraction (approx. 1-20%) of magmas generated in the mantle erupt at the surface. While volcanic eruptions are typically considered as the main exhaust pipes for volatile elements to escape into the atmosphere, the contribution of magma reservoirs crystallizing in the crust is likely to dominate the volatile transfer from depth to the surface.
View Article and Find Full Text PDFThe retention of contaminants in the finest and less-conductive regions of natural aquifer is known to strongly affect the decontamination of polluted aquifers. In fact, contaminant transfer from low to high mobility regions at the back end of a contaminant plume (i.e.
View Article and Find Full Text PDFThis article presents a three-dimensional numerical framework for the simulation of fluid-fluid immiscible compounds in complex geometries, based on the multiple-relaxation-time lattice Boltzmann method to model the fluid dynamics and the color-gradient approach to model multicomponent flow interaction. New lattice weights for the lattices D3Q15, D3Q19, and D3Q27 that improve the Galilean invariance of the color-gradient model as well as for modeling the interfacial tension are derived and provided in the Appendix. The presented method proposes in particular an approach to model the interaction between the fluid compound and the solid, and to maintain a precise contact angle between the two-component interface and the wall.
View Article and Find Full Text PDF