Publications by authors named "Andrea Palone"

The tert-butyl group is a common aliphatic motif extensively employed to implement steric congestion and conformational rigidity in organic and organometallic molecules. Because of the combination of a high bond dissociation energy (~100 kcal mol) and limited accessibility, in the absence of directing groups, neither radical nor organometallic approaches are effective for the chemical modification of tert-butyl C-H bonds. Herein we overcome these limits by employing a highly electrophilic manganese catalyst, [Mn(bpeb)(OTf)], that operates in the strong hydrogen bond donor solvent nonafluoro-tert-butyl alcohol (NFTBA) and catalytically activates hydrogen peroxide to generate a powerful manganese-oxo species that effectively oxidizes tert-butyl C-H bonds.

View Article and Find Full Text PDF

Chiral oxygenated aliphatic moieties are recurrent in biological and pharmaceutically relevant molecules and constitute one of the most versatile types of functionalities for further elaboration. Herein we report a protocol for straightforward and general access to chiral -lactones via enantioselective oxidation of strong nonactivated primary and secondary C()-H bonds in readily available carboxylic acids. The key enabling aspect is the use of robust sterically encumbered manganese catalysts that provide outstanding enantioselectivities (up to >99.

View Article and Find Full Text PDF

Enantioselective C-H oxidation is a standing chemical challenge foreseen as a powerful tool to transform readily available organic molecules into precious oxygenated building blocks. Here, we describe a catalytic enantioselective hydroxylation of tertiary C-H bonds in cyclohexane scaffolds with HO, an evolved manganese catalyst that provides structural complementary to the substrate similarly to the lock-and-key recognition operating in enzymatic active sites. Theoretical calculations unveil that enantioselectivity is governed by the precise fitting of the substrate scaffold into the catalytic site, through a network of complementary weak non-covalent interactions.

View Article and Find Full Text PDF

Reactions that enable selective functionalization of strong aliphatic C-H bonds open new synthetic paths to rapidly increase molecular complexity and expand chemical space. Particularly valuable are reactions where site-selectivity can be directed toward a specific C-H bond by catalyst control. Herein we describe the catalytic site- and stereoselective γ-lactonization of unactivated primary C-H bonds in carboxylic acid substrates.

View Article and Find Full Text PDF