Therapeutic hypothermia (TH) is the current standard of care for neonatal hypoxic-ischemic encephalopathy (HIE), yet morbidity and mortality remain significant. Adjuvant neuroprotective agents have been suggested to augment hypothermic-mediated neuroprotection. This analysis aims to identify the classes of drugs that have been used in combination with hypothermia in the treatment of neonatal HIE and determine whether combination therapy is more efficacious than TH alone.
View Article and Find Full Text PDFNeuroinflammation is a key contributor to the pathogenic cascades induced by hypoxic-ischemic (HI) insult in the neonatal brain. AD-16 is a novel anti-inflammatory compound, recently found to exert potent inhibition of the lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators. In this study, we evaluated the effect of AD-16 on primary astrocytes and neurons under oxygen-glucose deprivation (OGD) in vitro and in mice with neonatal HI brain injury in vivo.
View Article and Find Full Text PDFRyanodine receptors (RyR) located on the membrane of the endoplasmic reticulum (ER), are a potent regulator of intracellular calcium levels upon activation. Dysregulated Ca homeostasis is characteristic of hypoxic-ischemic (HI) brain injury and ultimately leads to neurodegeneration. RyRs have thereby been implicated in the Ca imbalance that occurs during and after HI.
View Article and Find Full Text PDFIschemic stroke remains a devastating disease which is the leading cause of death worldwide. Visual impairment after stroke is a common complication which may lead to vision loss, greatly impacting life quality of patients. While ischemic stroke is traditionally characterized by a blockage of blood flow to the brain, this may coincide with reduced blood flow to the eye, resulting in retinal ischemia and leading to visual impairment.
View Article and Find Full Text PDFIon channels are ubiquitously expressed in almost all living cells, and are the third-largest category of drug targets, following enzymes and receptors. The transient receptor potential melastatin (TRPM) subfamily of ion channels are important to cell function and survival. Studies have shown upregulation of the TRPM family of ion channels in various brain tumours.
View Article and Find Full Text PDF