Publications by authors named "Andrea Nedelcu"

Background Prostate MRI for the detection of clinically significant prostate cancer (csPCa) is standardized by the Prostate Imaging Reporting and Data System (PI-RADS), currently in version 2.1. A systematic review and meta-analysis infrastructure with a 12-month update cycle was established to evaluate the diagnostic performance of PI-RADS over time.

View Article and Find Full Text PDF

Background: In this work, we compare input level, feature level and decision level data fusion techniques for automatic detection of clinically significant prostate lesions (csPCa).

Methods: Multiple deep learning CNN architectures were developed using the Unet as the baseline. The CNNs use both multiparametric MRI images (T2W, ADC, and High b-value) and quantitative clinical data (prostate specific antigen (PSA), PSA density (PSAD), prostate gland volume & gross tumor volume (GTV)), and only mp-MRI images (n = 118), as input.

View Article and Find Full Text PDF

Unlabelled: Prostate magnetic resonance imaging has become the imaging standard for prostate cancer in various clinical settings, with interpretation standardized according to the Prostate Imaging Reporting and Data System (PI-RADS). Each year, hundreds of scientific studies that report on the diagnostic performance of PI-RADS are published. To keep up with this ever-increasing evidence base, systematic reviews and meta-analyses are essential.

View Article and Find Full Text PDF

Background: Multiparametric MRI (mpMRI) improves the detection of aggressive prostate cancer (PCa) subtypes. As cases of active surveillance (AS) increase and tumor progression triggers definitive treatment, we evaluated whether an AI-driven algorithm can detect clinically significant PCa (csPCa) in patients under AS.

Methods: Consecutive patients under AS who received mpMRI (PI-RADSv2.

View Article and Find Full Text PDF