Besides its function as a local mediator of the immune response, histamine can play a role as a neurotransmitter and neuromodulator. Histamine actions are classically mediated through four different G protein-coupled receptor subtypes but non-classical actions were also described, including effects on many ligand-gated ion channels. Previous evidence indicated that histamine acts as a positive modulator on diverse GABA receptor subtypes, such as GABAα1β2γ2, GABAα2β3γ2, GABAα3β3γ2, GABAα4β3γ2 and GABAα5β3γ2.
View Article and Find Full Text PDFReactive oxygen species (ROS) are best known for being involved in cellular metabolism and oxidative stress, but also play important roles in cell communication. ROS signaling has become increasingly recognized as a mechanism implicated in the regulation of synaptic neurotransmission, under both physiological and pathological conditions. Hydrogen peroxide (HO) and superoxide anion are the main biologically relevant endogenous ROS in the nervous system.
View Article and Find Full Text PDFl-Cysteine is an endogenous sulfur-containing amino acid with multiple and varied roles in the central nervous system, including neuroprotection and the maintenance of the redox balance. However, it was also suggested as an excitotoxic agent implicated in the pathogenesis of neurological disorders such as Parkinson's and Alzheimer's disease. l-Cysteine can modulate the activity of ionic channels, including voltage-gated calcium channels and glutamatergic NMDA receptors, whereas its effects on GABAergic neurotransmission had not been studied before.
View Article and Find Full Text PDFThe small ventral lateral neurons (sLNvs) constitute a central circadian pacemaker in the Drosophila brain. They organize daily locomotor activity, partly through the release of the neuropeptide pigment-dispersing factor (PDF), coordinating the action of the remaining clusters required for network synchronization. Despite extensive efforts, the basic principles underlying communication among circadian clusters remain obscure.
View Article and Find Full Text PDFOxidizing and reducing agents, which are currently involved in cell metabolism and signaling pathways, can regulate fast inhibitory neurotransmission mediated by GABA receptors in the nervous system. A number of in vitro studies have shown that diverse redox compounds, including redox metabolites and reactive oxygen and nitrogen species, modulate phasic and tonic responses mediated by neuronal GABAA receptors through both presynaptic and postsynaptic mechanisms. We review experimental data showing that many redox agents, which are normally present in neurons and glia or are endogenously generated in these cells under physiologic states or during oxidative stress (e.
View Article and Find Full Text PDFGABA(A) receptors (GABA(A)Rs) are ligand-gated ion channels that mediate inhibitory neurotransmission in the central nervous system (CNS). They are members of the Cys-loop receptor family and display marked structural and functional heterogeneity. Many GABA(A)Rs receptor subtypes are allosterically modulated by benzodiazepines (BDZs), which are drugs extensively used as anxiolytics, sedative-hypnotics and anticonvulsants.
View Article and Find Full Text PDFBackground And Purpose: Reactive oxygen species (ROS) are normally involved in cell oxidative stress but also play a role as cellular messengers in redox signalling; for example, modulating the activity of neurotransmitter receptors and ion channels. However, the direct actions of ROS on GABAA receptors were not previously demonstrated. In the present work, we studied the effects of ROS on GABAA ρ1 receptor function.
View Article and Find Full Text PDFQuercetin is a natural flavonoid widely distributed in plants that acts as a neuroprotective agent and modulates the activity of different synaptic receptors and ion channels, including the ionotropic GABA receptors. GABA(Aρ₁) receptors were shown to be antagonized by quercetin, but the mechanisms underlying these antagonistic actions are still unknown. We have analyzed here if the antagonistic action produced by quercetin on GABA(Aρ₁) receptors was related to its redox activity or due to alternative mechanism/s.
View Article and Find Full Text PDF