Publications by authors named "Andrea Murari"

The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), broke out in December 2019 in Wuhan city, in the Hubei province of China. Since then, it has spread practically all over the world, disrupting many human activities. In temperate climates overwhelming evidence indicates that its incidence increases significantly during the cold season.

View Article and Find Full Text PDF

In recent years, several bacterial strains have acquired significant antibiotic resistance and can, therefore, become difficult to contain. To counteract such trends, relational databases can be a powerful tool for supporting the decision-making process. The case of diffusion in a central region of Italy was analyzed as a case study.

View Article and Find Full Text PDF

Model selection criteria are widely used to identify the model that best represents the data among a set of potential candidates. Amidst the different model selection criteria, the Bayesian information criterion (BIC) and the Akaike information criterion (AIC) are the most popular and better understood. In the derivation of these indicators, it was assumed that the model's dependent variables have already been properly identified and that the entries are not affected by significant uncertainties.

View Article and Find Full Text PDF

This article describes a refinement of recurrence analysis to determine the delay in the causal influence between a driver and a target, in the presence of additional perturbations affecting the time series of the response observable. The methodology is based on the definition of a new type of recurrence plots, the Conditional Joint Recurrence plot. The potential of the proposed approach resides in the great flexibility of recurrence plots themselves, which allows extending the technique to more than three quantities.

View Article and Find Full Text PDF

Advanced time series analysis and causality detection techniques have been successfully applied to the assessment of synchronization experiments in tokamaks, such as Edge Localized Modes (ELMs) and sawtooth pacing. Lag synchronization is a typical strategy for fusion plasma instability control by pace-making techniques. The major difficulty, in evaluating the efficiency of the pacing methods, is the coexistence of the causal effects with the periodic or quasi-periodic nature of the plasma instabilities.

View Article and Find Full Text PDF

Determining the coupling between systems remains a topic of active research in the field of complex science. Identifying the proper causal influences in time series can already be very challenging in the trivariate case, particularly when the interactions are non-linear. In this paper, the coupling between three Lorenz systems is investigated with the help of specifically designed artificial neural networks, called time delay neural networks (TDNNs).

View Article and Find Full Text PDF

The Bayesian information criterion (BIC), the Akaike information criterion (AIC), and some other indicators derived from them are widely used for model selection. In their original form, they contain the likelihood of the data given the models. Unfortunately, in many applications, it is practically impossible to calculate the likelihood, and, therefore, the criteria have been reformulated in terms of descriptive statistics of the residual distribution: the variance and the mean-squared error of the residuals.

View Article and Find Full Text PDF

The increasingly sophisticated investigations of complex systems require more robust estimates of the correlations between the measured quantities. The traditional Pearson correlation coefficient is easy to calculate but sensitive only to linear correlations. The total influence between quantities is, therefore, often expressed in terms of the mutual information, which also takes into account the nonlinear effects but is not normalized.

View Article and Find Full Text PDF

The application of data driven machine learning and advanced statistical tools to complex physics experiments, such as Magnetic Confinement Nuclear Fusion, can be problematic, due the varying conditions of the systems to be studied. In particular, new experiments have to be planned in unexplored regions of the operational space. As a consequence, care must be taken because the input quantities used to train and test the performance of the analysis tools are not necessarily sampled by the same probability distribution as in the final applications.

View Article and Find Full Text PDF

Malaria, a disease with major health and socio-economic impacts, is driven by multiple factors, including a complex interaction with various climatic variables. In this paper, five methods developed for inferring causal relations between dynamic processes based on the information encapsulated in time series are applied on cases previously studied in literature by means of statistical methods. The causality detection techniques investigated in the paper are: a version of the kernel Granger causality, transfer entropy, recurrence plot, causal decomposition and complex networks.

View Article and Find Full Text PDF

The most widely used forms of model selection criteria, the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC), are expressed in terms of synthetic indicators of the residual distribution: the variance and the mean-squared error of the residuals respectively. In many applications in science, the noise affecting the data can be expected to have a Gaussian distribution. Therefore, at the same level of variance and mean-squared error, models, whose residuals are more uniformly distributed, should be favoured.

View Article and Find Full Text PDF

A new measure for the characterization of interconnected dynamical systems coupling is proposed. The method is based on the representation of time series as weighted cross-visibility networks. The weights are introduced as the metric distance between connected nodes.

View Article and Find Full Text PDF

Understanding the details of the correlation between time series is an essential step on the route to assessing the causal relation between systems. Traditional statistical indicators, such as the Pearson correlation coefficient and the mutual information, have some significant limitations. More recently, transfer entropy has been proposed as a powerful tool to understand the flow of information between signals.

View Article and Find Full Text PDF

The total emission of radiation is a crucial quantity to calculate the power balances and to understand the physics of any Tokamak. Bolometric systems are the main tool to measure this important physical quantity through quite sophisticated tomographic inversion methods. On the Joint European Torus, the coverage of the bolometric diagnostic, due to the availability of basically only two projection angles, is quite limited, rendering the inversion a very ill-posed mathematical problem.

View Article and Find Full Text PDF

The Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open.

View Article and Find Full Text PDF