Covalent 2D magnets such as CrTe, which feature self-intercalated magnetic cations located between monolayers of transition-metal dichalcogenide material, offer a unique platform for controlling magnetic order and spin texture, enabling new potential applications for spintronic devices. Here, it is demonstrated that the unconventional anomalous Hall effect (AHE) in CrTe, characterized by additional humps and dips near the coercive field in AHE hysteresis, originates from an intrinsic mechanism dictated by the self-intercalation. This mechanism is distinctly different from previously proposed mechanisms such as topological Hall effect, or two-channel AHE arising from spatial inhomogeneities.
View Article and Find Full Text PDFMagnetic bit writing by short-wave magnons without conversion to the electrical domain is expected to be a game-changer for in-memory computing architectures. Recently, the reversal of nanomagnets by propagating magnons was demonstrated. However, experiments have not yet explored different wavelengths and the nonlinear excitation regime of magnons required for computational tasks.
View Article and Find Full Text PDFMagnons, quanta of spin waves, are known to enable information processing with low power consumption at the nanoscale. So far, however, experimentally realized half-adders, wave-logic, and binary output operations are based on few µm-long spin waves and restricted to one spatial direction. Here, magnons with wavelengths λ down to 50 nm in ferrimagnetic Y Fe O below 2D lattices of periodic and aperiodic ferromagnetic nanopillars are explored.
View Article and Find Full Text PDFOn-chip signal processing at microwave frequencies is key for modern mobile communication. When one aims at small footprints, low power consumption, reprogrammable filters, and delay lines, magnons in low-damping ferrimagnets offer great promise. Ferromagnetic grating couplers have been reported to be specifically useful as microwave-to-magnon transducers.
View Article and Find Full Text PDF