Glucose uptake and homeostasis are regulated mainly by skeletal muscle (SM), white adipose tissue (WAT), pancreas, and the liver. Participation of estradiol in this regulation is still under intense investigation. We have demonstrated that, in SM of male mice, expression of the insulin-regulated glucose transporter (GLUT)4 is reduced by estrogen receptor (ER)beta agonists.
View Article and Find Full Text PDFPregnancy is accompanied by hyperestrogenism, however, the role of estrogens in the gestational-induced insulin resistance is unknown. Skeletal muscle plays a fundamental role in this resistance, where GLUT4 regulates glucose uptake. We investigated: (1) effects of oophorectomy and estradiol (E2) on insulin sensitivity and GLUT4 expression.
View Article and Find Full Text PDFEstrogen receptors (ER) are important regulators of metabolic diseases such as obesity and insulin resistance (IR). While ERalpha seems to have a protective role in such diseases, the function of ERbeta is not clear. To characterize the metabolic function of ERbeta, we investigated its molecular interaction with a master regulator of insulin signaling/glucose metabolism, the PPARgamma, in vitro and in high-fat diet (HFD)-fed ERbeta -/- mice (betaERKO) mice.
View Article and Find Full Text PDFInterstitial cystitis/painful bladder syndrome is a disease seen mostly in women, and symptoms tend to be worse premenopausally or during ovulation. The four cardinal symptoms of interstitial cystitis/painful bladder syndrome are bladder pain, urgency, frequency, and nocturia. Estrogen has been implicated in the etiology of this disease, but the role of the two estrogen receptors (ER), ERalpha and ERbeta, has not been investigated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2007
Ovulation rarely occurs in mice in which the estrogen receptor beta (ERbeta) gene has been inactivated (ERbeta-/- mice). Here, we investigated whether this subfertility is due to a defect in the ovary itself or to more general endocrine changes in ERbeta-/- mice. We transplanted ERbeta-/- ovaries into WT mice and WT ovaries into ERbeta-/- mice.
View Article and Find Full Text PDFEstrogens, which are stimulators of growth of both the normal breast and malignant breast, mediate their effects through two estrogen receptors (ER), namely ERalpha and ERbeta. ERalpha mediates the proliferative effect of estrogen in breast cancer cells, whereas ERbeta seems to be antiproliferative. We engineered ERalpha-positive T47D breast cancer cells to express ERbeta in a Tet-Off-regulated manner.
View Article and Find Full Text PDFIn this study, we compared the uterine tissue of estrogen receptor (ER)beta(-/-) mice and their WT littermates for differences in morphology, proliferation [the percentage of labeled cells 2 h after BrdUrd injection and EGF receptor (EGFR) expression], and differentiation (expression of progesterone receptor, E-cadherin, and cytokeratins). In ovariectomized mice, progesterone receptor expression in the uterine epithelium was similar in WT and ERbeta(-/-) mice, but E-cadherin and cytokeratin 18 expression was lower in ERbeta(-/-) mice. The percentage of cells in S phase was 1.
View Article and Find Full Text PDFEstrogen receptor beta (ERbeta) is highly expressed in both type I and II pneumocytes as well as bronchiolar epithelial cells. ERalpha is not detectable in the adult lung. Lungs of adult female ERbeta knockout (ERbeta-/-) mice have already been reported to have fewer alveoli and reduced elastic recoil.
View Article and Find Full Text PDFWe have previously reported epithelial cellular hyperplasia in ventral prostates (VP) of mice lacking estrogen receptor beta (ER beta). To investigate the causes of this phenomenon, we measured cellular proliferation and apoptosis in VP of ER beta(-/-) and WT mice. With BrdUrd labeling, the number of proliferating cells was 3.
View Article and Find Full Text PDF