Publications by authors named "Andrea Minigher"

It is well known that the traditional synthetic polymers, such as Polyurethane foams, require raw materials that are not fully sustainable and are based on oil-feedstocks. For this reason, renewable resources such as biomass, polysaccharides and proteins are still recognized as one of the most promising approaches for substituting oil-based raw materials (mainly polyols). However, polyurethanes from renewable sources exhibit poor physical and functional performances.

View Article and Find Full Text PDF

Nowadays, the chemical industry is looking for sustainable chemicals to synthesize nanocomposite bio-based polyurethane foams, PUs, with the aim to replace the conventional petrochemical precursors. Some possibilities to increase the environmental sustainability in the synthesis of nanocomposite PUs include the use of chemicals and additives derived from renewable sources (such as vegetable oils or biomass wastes), which comprise increasingly wider base raw materials. Generally, sustainable PUs exhibit chemico-physical, mechanical and functional properties, which are not comparable with those of PUs produced from petrochemical precursors.

View Article and Find Full Text PDF

Benzoxazines are a class of phenolic compounds extensively studied in polymer science because of their properties as fiber reinforcements, fire-retardants and curing agents. In this article is described a solvent-less process, based on a Mannich reaction involving a primary amine and an aldehyde, for the preparation of new benzoxazines deriving from cardanol (a well known phenol obtained as a renewable organic resource and harmful by-product of the cashew industry). Particular attention is given to the synthesis and chemical characterization (both by 1H NMR spectroscopy and HPLC), while the thermal polymerization process has been monitored by differential scanning calorimetry.

View Article and Find Full Text PDF