Publications by authors named "Andrea Michalkova"

Molecular dynamics (MD) simulations of poly(dimethylsiloxane) (PDMS) and poly(tetrafluoroethylene) (PTFE) were carried out to determine their surface properties and energies. This study helps to gain better insight into the molecular modeling of PDMS and PTFE, in particular how different approaches affect calculations of surface energy. Current experimental and theoretical data were used to further understand the surface properties of PDMS and PTFE as well as to validate and verify results obtained from the combination of density functional theory (DFT) calculations (including periodic boundary conditions) and MD simulations.

View Article and Find Full Text PDF

It is expected that the number and variety of engineered nanoparticles will increase rapidly over the next few years, and there is a need for new methods to quickly test the potential toxicity of these materials. Because experimental evaluation of the safety of chemicals is expensive and time-consuming, computational methods have been found to be efficient alternatives for predicting the potential toxicity and environmental impact of new nanomaterials before mass production. Here, we show that the quantitative structure-activity relationship (QSAR) method commonly used to predict the physicochemical properties of chemical compounds can be applied to predict the toxicity of various metal oxides.

View Article and Find Full Text PDF

Quantum mechanical (QM) calculations, classical grand canonical Monte Carlo (GCMC) simulations, and classical molecular dynamics (MD) simulations are performed to test the effect of charge distribution on hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) adsorption and diffusion in IRMOF-10. Several different methods for mapping QM electron distributions onto atomic point charges are explored, including the electrostatic potential (ESP) method, Mulliken population analysis, Lowdin population analysis, and natural bond orbital analysis. Classical GCMC and MD simulations of RDX in IRMOF-10 are performed using 15 combinations of charge sources of RDX and IRMOF-10.

View Article and Find Full Text PDF