The Cre-loxP system has been used to generate cell-type specific mutations in mice, allowing researchers to investigate the underlying biological mechanisms of disease. However, the Cre-recombinase alone can induce phenotypes that confound comparisons among genotypes if the appropriate Cre control is not included. In this study, we characterised behavioural, morphological and metabolic phenotypes of the pan-neuronal Syn1Cre line.
View Article and Find Full Text PDFAging is associated with an increase in body fat mass and a concomitant decrease in lean mass and bone density in mammals. Body adiposity can also be redistributed with age, resulting in abdominal fat accumulation and subcutaneous fat reduction. In addition, specific variation in fat distribution is considered to be a risk factor for a number of age-related metabolic disorders.
View Article and Find Full Text PDFReduced activity of insulin/insulin-like growth factor signaling (IIS) extends health and life span in mammals. Loss of the gene increases survival in mice and causes tissue-specific changes in gene expression. However, the tissues underlying IIS-mediated longevity are currently unknown.
View Article and Find Full Text PDFThe multitude of obesogenic diets used in rodent studies can hardly be overviewed. Since standardization is missing and assuming that individual compositions provoke individual effects, the choice of quality, quantity and combination of diet ingredients seems to be crucial for the outcome and interpretation of obesity studies. Therefore, the present study was conducted to compare the individual effects of three commonly used obesogenic diets, mainly differing in sugar and fat content.
View Article and Find Full Text PDFGlucosamine feeding and genetic activation of the hexosamine biosynthetic pathway (HBP) have been linked to improved protein quality control and lifespan extension. However, as an energy sensor, the HBP has been implicated in tumor progression and diabetes. Given these opposing outcomes, it is imperative to explore the long-term effects of chronic HBP activation in mammals.
View Article and Find Full Text PDFMaternal obesity greatly affects next generations, elevating obesity risk in the offspring through perinatal programming and flawed maternal and newborn nutrition. The exact underlying mechanisms are poorly understood. Interleukin-6 (IL-6) mediates its effects through a membrane-bound receptor or by trans-signaling (tS), which can be inhibited by the soluble form of the co-receptor gp130 (sgp130).
View Article and Find Full Text PDFLithium is a nutritional trace element, used clinically as an anti-depressant. Preclinically, lithium has neuroprotective effects in invertebrates and mice, and it can also extend lifespan in fission yeast, C. elegans and Drosophila.
View Article and Find Full Text PDFAging is accompanied by a general decline in the function of many cellular pathways. However, whether these are causally or functionally interconnected remains elusive. Here, we study the effect of mitochondrial-nuclear communication on stem cell aging.
View Article and Find Full Text PDFMitochondrial transcription factor A (TFAM) is compacting mitochondrial DNA (dmtDNA) into nucleoids and directly controls mtDNA copy number. Here, we show that the TFAM-to-mtDNA ratio is critical for maintaining normal mtDNA expression in different mouse tissues. Moderately increased TFAM protein levels increase mtDNA copy number but a normal TFAM-to-mtDNA ratio is maintained resulting in unaltered mtDNA expression and normal whole animal metabolism.
View Article and Find Full Text PDFDnmt3a2, a DNA methyltransferase, is induced by neuronal activity and participates in long-term memory formation with the increased expression of synaptic plasticity genes. We wanted to determine if Dnmt3a2 with its partner Dnmt3L may influence motor behavior via the dopaminergic system. To this end, we generated a mouse line, Dnmt3a2/3L, with dopamine transporter (DAT) promotor driven Dnmt3a2/3L overexpression.
View Article and Find Full Text PDFObjective: Maternal obesity and a disturbed metabolic environment during pregnancy and lactation have been shown to result in many long-term health consequences for the offspring. Among them, impairments in neurocognitive development and performance belong to the most dreaded ones. So far, very few mechanistic approaches have aimed to determine the responsible molecular events.
View Article and Find Full Text PDFBalancing the quantity and quality of dietary protein relative to other nutrients is a key determinant of evolutionary fitness. A theoretical framework for defining a balanced diet would both reduce the enormous workload to optimize diets empirically and represent a breakthrough toward tailoring diets to the needs of consumers. Here, we report a simple and powerful in silico technique that uses the genome information of an organism to define its dietary amino acid requirements.
View Article and Find Full Text PDFObesity and resistance to insulin are closely associated with the development of low-grade inflammation. Interleukin 6 (IL-6) is linked to obesity-associated inflammation; however, its role in this context remains controversial. Here we found that mice with an inactivated gene encoding the IL-6Rα chain of the receptor for IL-6 in myeloid cells (Il6ra(Δmyel) mice) developed exaggerated deterioration of glucose homeostasis during diet-induced obesity, due to enhanced resistance to insulin.
View Article and Find Full Text PDFUlcerative dermatitis (UD) is a severe inflammatory skin disorder with an unknown aetiology. Recently, insulin receptor substrate 1 KO mice were shown to be fully resistant to UD. In this study, we showed that high-fat diet (HFD) feeding significantly increased incidence of UD in wild type (WT) C57BL/6 mice, as did lithium-mediated inhibition of GSK3-β, which is a key negative regulator of IRS1.
View Article and Find Full Text PDFDopaminergic midbrain neurons integrate signals on food palatability and food-associated reward into the complex control of energy homeostasis. To define the role of insulin receptor (IR) signaling in this circuitry, we inactivated IR signaling in tyrosine hydroxylase (Th)-expressing cells of mice (IR(ΔTh)). IR inactivation in Th-expressing cells of mice resulted in increased body weight, increased fat mass, and hyperphagia.
View Article and Find Full Text PDFLeptin-stimulated Stat3 activation in proopiomelanocortin (POMC)-expressing neurons of the hypothalamus plays an important role in maintenance of energy homeostasis. While Stat3 activation in POMC neurons is required for POMC expression, the role of elevated basal Stat3 activation as present in the development of obesity has not been directly addressed. Here, we have generated and characterized mice expressing a constitutively active version of Stat3 (Stat3-C) in POMC neurons (Stat3-C(POMC) mice).
View Article and Find Full Text PDFLeptin, an adipocyte-derived hormone, acts on hypothalamic neurons located in the arcuate nucleus (ARC) of the hypothalamus to regulate energy homeostasis. One of the leptin-regulated neuronal subtypes in the ARC are agouti-related peptide (AgRP)-expressing neurons, which are involved in the regulation of food intake and are directly inhibited by leptin. Leptin activates the signal transducer and activator of transcription 3 (Stat3), but the role of Stat3 in the regulation of AgRP neurons is unclear.
View Article and Find Full Text PDFTogether with impaired glucose uptake in skeletal muscle, elevated hepatic gluconeogenesis is largely responsible for the hyperglycemic phenotype in type II diabetic patients. Intracellular glucocorticoid and cyclic adenosine monophosphate (cAMP)/protein kinase A-dependent signaling pathways contribute to aberrant hepatic glucose production through the induction of gluconeogenic enzyme gene expression. Here we show that the coactivator-associated arginine methyltransferase 1 (CARM1) is required for cAMP-mediated activation of rate-limiting gluconeogenic phosphoenolpyruvate carboxykinase (PEPCK; EC 4.
View Article and Find Full Text PDF