Publications by authors named "Andrea McReynolds"

The mitogen-activated protein kinase ERK2 is able to elicit a wide range of context-specific responses to distinct stimuli, but the mechanisms underlying this versatility remain in question. Some cellular functions of ERK2 are mediated through regulation of gene expression. In addition to phosphorylating numerous transcriptional regulators, ERK2 is known to associate with chromatin and has been shown to bind oligonucleotides directly.

View Article and Find Full Text PDF

Preorganization of enzyme active sites for substrate recognition typically comes at a cost to the stability of the folded form of the protein; consequently, enzymes can be dramatically stabilized by substitutions that attenuate the size and preorganization "strain" of the active site. How this stability-activity tradeoff constrains enzyme evolution has remained less certain, and it is unclear whether one should expect major stability insults as enzymes mutate towards new activities or how these new activities manifest structurally. These questions are both germane and easy to study in beta-lactamases, which are evolving on the timescale of years to confer resistance to an ever-broader spectrum of beta-lactam antibiotics.

View Article and Find Full Text PDF

Lys67 is essential for the hydrolysis reaction mediated by class C beta-lactamases. Its exact catalytic role lies at the center of several different proposed reaction mechanisms, particularly for the deacylation step, and has been intensely debated. Whereas a conjugate base hypothesis postulates that a neutral Lys67 and Tyr150 act together to deprotonate the deacylating water, previous experiments on the K67R mutants of class C beta-lactamases suggested that the role of Lys67 in deacylation is mainly electrostatic, with only a 2- to 3-fold decrease in the rate of the mutant vs the wild type enzyme.

View Article and Find Full Text PDF

A central challenge in structure-based ligand design is the accurate prediction of binding free energies. Here we apply alchemical free energy calculations in explicit solvent to predict ligand binding in a model cavity in T4 lysozyme. Even in this simple site, there are challenges.

View Article and Find Full Text PDF

To provide alternative methods for regulation of gene transcription initiated by the binding of thyroid hormone (T3) to the thyroid receptor (TR), we have developed a high-throughput method for discovering inhibitors of the interaction of TR with its transcriptional coactivators. The screening method is based on fluorescence polarization (FP), one of the most sensitive and robust high-throughput methods for the study of protein-protein interactions. A fluorescently labeled coactivator is excited by polarized light.

View Article and Find Full Text PDF

Thyroid hormone (3,5,3'-triiodo-L-thyronine, T3) is an endocrine hormone that exerts homeostatic regulation of basal metabolic rate, heart rate and contractility, fat deposition, and other phenomena (1, 2). T3 binds to the thyroid hormone receptors (TRs) and controls their regulation of transcription of target genes. The binding of TRs to thyroid hormone induces a conformational change in TRs that regulates the composition of the transcriptional regulatory complex.

View Article and Find Full Text PDF

Ligand-dependent nuclear hormone receptor (NR) signaling requires direct interaction between NR and the steroid receptor coactivators (SRC). Herein we utilize a library of SRC2 peptidomimetics to select for specific inhibitors of the interaction of SRC2 with the two estrogen receptor (ER) isoforms, ERalpha and ERbeta, in the presence of three different ligands: 17beta-estradiol, diethylstilbesterol, and genistein. The pattern of inhibitor selectivity for each ER isoform varied depending upon which ligand was present, thus demonstrating that the ligands exert unique allosteric effects upon the surface of the SRC binding pocket.

View Article and Find Full Text PDF

The thyroid hormone receptor regulates a diverse set of genes that control processes from embryonic development to adult homeostasis. Upon binding of thyroid hormone, the thyroid receptor releases corepressor proteins and undergoes a conformational change that allows for the interaction of coactivating proteins necessary for gene transcription. This interaction is mediated by a conserved motif, termed the NR box, found in many coregulators.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2uiqfj8k5rl9koamok174t6f7k313c5j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once