Developments in the field of artificial intelligence have made great strides in the field of automatic semantic segmentation, both in the 2D (image) and 3D spaces. Within the context of 3D recording technology it has also seen application in several areas, most notably in creating semantically rich point clouds which is usually performed manually. In this paper, we propose the introduction of deep learning-based semantic image segmentation into the photogrammetric 3D reconstruction and classification workflow.
View Article and Find Full Text PDFThis paper presents LocSpeck, a collaborative and distributed indoor positioning system for dynamic nodes connected using an ad-hoc network, based on inter-node relative range measurements and Wi-Fi fingerprinting. The proposed system operates using peer-to-peer range measurements and does not need ultra-wideband (UWB) fixed anchor, nor it needs a predefined network topology. The nodes could be asymmetric in terms of the available sensors onboard, the computational resources, and the power capacity.
View Article and Find Full Text PDFCooperative positioning (CP) utilises information sharing among multiple nodes to enable positioning in Global Navigation Satellite System (GNSS)-denied environments. This paper reports the performance of a CP system for pedestrians using Ultra-Wide Band (UWB) technology inGNSS-denied environments. This data set was collected as part of a benchmarking measurementcampaign carried out at the Ohio State University in October 2017.
View Article and Find Full Text PDFThanks to the recent diffusion of low-cost high-resolution digital cameras and to the development of mostly automated procedures for image-based 3D reconstruction, the popularity of photogrammetry for environment surveys is constantly increasing in the last years. Automatic feature matching is an important step in order to successfully complete the photogrammetric 3D reconstruction: this step is the fundamental basis for the subsequent estimation of the geometry of the scene. This paper reconsiders the feature matching problem when dealing with smart mobile devices (e.
View Article and Find Full Text PDFMotivated by the increasing importance of adaptive optics (AO) systems for improving the real resolution of large ground telescopes, and by the need of testing the AO system performance in realistic working conditions, in this paper we address the problem of simulating the turbulence effect on ground telescope observations at high resolution. The procedure presented here generalizes the multiscale stochastic approach introduced in our earlier paper [Appl. Opt.
View Article and Find Full Text PDFTurbulence simulation methods are of fundamental importance for evaluating the performance of control strategies for Adaptive Optics (AO) systems. In order to obtain a reliable evaluation of the performance a statistically accurate turbulence simulation method has to be used. This work generalizes a previously proposed method for turbulence simulation based on the use of a multiscale stochastic model.
View Article and Find Full Text PDFSimulating the turbulence effect on ground telescope observations is of fundamental importance for the design and test of suitable control algorithms for adaptive optics systems. In this paper we propose a multiscale approach for efficiently synthesizing turbulent phases at very high resolution. First, the turbulence is simulated at low resolution, taking advantage of a previously developed method for generating phase screens [J.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
February 2008
The phase screen method is a well-established approach to take into account the effects of atmospheric turbulence in astronomical seeing. This is of key importance in designing adaptive optics for new-generation telescopes, in particular in view of applications such as exoplanet detection or long-exposure spectroscopy. We present an innovative approach to simulate turbulent phase that is based on stochastic realization theory.
View Article and Find Full Text PDF