Publications by authors named "Andrea Marino-Lopez"

The increasing attention that carbon-based nanomaterials have attracted due to their distinctive properties makes them one of the most widely used nanomaterials for industrial purposes. However, their toxicity and environmental effects must be carefully studied, particularly regarding aquatic biota. The implications of these carbon-based nanomaterials on aquatic ecosystems, due to their potential entry or accidental release during manufacturing and treatment processes, need to be studied because their impacts upon living organisms are not fully understood.

View Article and Find Full Text PDF

Bioorthogonal chemistry has inspired a new subarea of chemistry providing a powerful tool to perform novel biocompatible chemospecific reactions in living systems. Following the premise that they do not interfere with biological functions, bioorthogonal reactions are increasingly applied in biomedical research, particularly with respect to genetic encoding systems, fluorogenic reactions for bioimaging, and cancer therapy. This Minireview compiles recent advances in the use of heterogeneous catalysts for bioorthogonal reactions.

View Article and Find Full Text PDF

Tear analysis has become an invaluable asset in clinical research in order to identify and quantify novel biomarkers for a wide array of conditions. The present work is intended to take this area of study one step further by implementing an innovative sensing platform through which exploration of low-molecular-weight compounds is conducted outperforming traditional analytical technologies. With this aim, carefully engineered plasmonic nanoassemblies have been synergistically combined with molecular-sieving materials giving rise to size-selective samplers with SERS detection capabilities.

View Article and Find Full Text PDF

Major current challenges in nano-biotechnology and nano-biomedicine include the implementation of predesigned chemical reactions in biological environments. In this context, heterogeneous catalysis is emerging as a promising approach to extend the richness of organic chemistry onto the complex environments inherent to living systems. Herein we report the design and synthesis of hybrid heterogeneous catalysts capable of being remotely activated by near-infrared (NIR) light for the performance of selective photocatalytic chemical transformations in biological media.

View Article and Find Full Text PDF

Herein we illustrate an effective protocol to boost the optical enhancing properties of gold nanostars. By coating single nanostars with a mesoporous silica layer of the appropriate size (yolk capsules), to localize them under optical microscopy, it is possible to enumerate single particles and design SERS quantitative methods with minute amounts of metallic particles.

View Article and Find Full Text PDF

Nanostructures with concave shapes made from continuous segments of plasmonic metals are known to dramatically enhance Raman scattering. Their synthesis in solutions is hindered, however, by their thermodynamic instability due to large surface area and high curvature of refracted geometries with nanoscale dimensions. Herein, we show that nanostructures with concave geometries can spontaneously form via self-organization of gold nanoparticles (NPs) at the air-water interface.

View Article and Find Full Text PDF