2,4-Bis[4'-(N,N-di(4″-hydroxyphenyl)amino)-2',6'-dihydroxyphenyl]squaraine (Sq-TAA-OH, optical bandgap 1.4 eV, HOMO level -5.3 eV by ultraviolet photoelectron spectroscopy) is used as an active layer material in solution processed, bulk-heterojunction organic photovoltaic cells with configuration ITO/PEDOT:PSS/Sq-TAA-OH:PC71BM/LiF/Al.
View Article and Find Full Text PDFPolymer solar cells fabricated in air under ambient conditions are of significant current interest, because of the implications in practicality of such devices. However, only moderate performance has been obtained for the air-processed devices. Here, we report that enhanced short circuit current density (JSC) and open circuit voltage (VOC) in air-processed poly(3-hexylthiophene) (P3HT)-based solar cells can be obtained by using a series of donor-acceptor dyes as the third component in the device.
View Article and Find Full Text PDFA series of acceptor-donor-acceptor molecules containing terminal BODIPY moieties conjugated through the meso position were synthesized. Deep LUMO energy levels and good visible absorption led to their use as acceptors in bulk heterojunction solar cells. Inverted devices were fabricated, reaching efficiencies as high as 1.
View Article and Find Full Text PDFWe report the syntheses and properties of thienopyrrole based unsymmetrical and extended heteroacenes, which are isoelectronic with heptacene (30π) and nonacene (38π), respectively. Optical and electrochemical properties of these seven and nine rings fused systems are studied. The optoelectronic properties of the syn and anti-isomers of the unsymmetrical heteroacenes are also compared.
View Article and Find Full Text PDFResearch in the field of organic photovoltaics has gained considerable momentum in the last two decades owing to the need for developing low-cost and efficient energy harvesting systems. Elegant molecular architectures have been designed, synthesized and employed as active materials for photovoltaic devices thereby leading to a better molecular structure-device property relationship understanding. In this perspective, we outline new macromolecular scaffolds that have been designed within the purview of each of the three fundamental processes involving light harvesting, charge separation and charge transport.
View Article and Find Full Text PDFPerylenediimide-pentathiophene systems with varied architecture of thiophene units were synthesized. The photophysical, electrochemical, and charge transport behavior of the synthesized compounds were studied. Both molecules showed a low band gap of ∼1.
View Article and Find Full Text PDF