Healthy brain function depends on balancing stable integration between brain areas for effective coordinated functioning, with coexisting segregation that allows subsystems to express their functional specialization. Metastability, a concept from the dynamical systems literature, has been proposed as a key signature that characterizes this balance. Building on this principle, the neuroscience literature has leveraged the phenomenon of metastability to investigate various aspects of brain function in health and disease.
View Article and Find Full Text PDFBackground: Carpal tunnel syndrome (CTS) has already been described as a possible form of neural leprosy presentation. However, the median nerve can be involved in this neuropathy in proximal segments and, sometimes, with an asymmetric impairment of the digital branches.
Objective: To detail the pattern of median nerve impairment through nerve conduction study (NCS) and ultrasound evaluation.
Lymphangiomas are rare benign tumors that result from lymphatic vessel malformations and/or obstructions commonly on the neck and armpits, being rare in the retroperitoneal space. We report a case of a healthy 25-month-old male with a six-month history of abdominal distension and recurrent episodes of diarrhea who was clinically diagnosed with giardiasis. The complementary evaluation showed a cystic formation occupying the whole abdominal cavity and implanted at the abdominal retroactivity.
View Article and Find Full Text PDFAdaptive cognition relies on cooperation across anatomically distributed brain circuits. However, specialised neural systems are also in constant competition for limited processing resources. How does the brain's network architecture enable it to balance these cooperative and competitive tendencies? Here we use computational whole-brain modelling to examine the dynamical and computational relevance of cooperative and competitive interactions in the mammalian connectome.
View Article and Find Full Text PDFAt this critical juncture in the development of NeuroAI, we outline challenges and training needs of junior researchers working across AI and neuroscience. We also provide advice and resources to help trainees plan their NeuroAI careers.
View Article and Find Full Text PDFResting-state functional magnetic resonance imaging evolves through a repertoire of functional connectivity patterns which might reflect ongoing cognition, as well as the contents of conscious awareness. We investigated whether the dynamic exploration of these states can provide robust and generalizable markers for the state of consciousness in human participants, across loss of consciousness induced by general anaesthesia or slow wave sleep. By clustering transient states of functional connectivity, we demonstrated that brain activity during unconsciousness is dominated by a recurrent pattern primarily mediated by structural connectivity and with a reduced capacity to transition to other patterns.
View Article and Find Full Text PDFThe mechanisms linking the brain's network structure to cognitively relevant activation patterns remain largely unknown. Here, by leveraging principles of network control, we show how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic database. Specifically, we systematically integrated large-scale multimodal neuroimaging data from functional magnetic resonance imaging, diffusion tractography, cortical morphometry and positron emission tomography to simulate how anatomically guided transitions between cognitive states can be reshaped by neurotransmitter engagement or by changes in cortical thickness.
View Article and Find Full Text PDFHow is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network.
View Article and Find Full Text PDFExploring the intricate relationship between brain's structure and function, and how this affects subjective experience is a fundamental pursuit in neuroscience. Psychedelic substances offer a unique insight into the influences of specific neurotransmitter systems on perception, cognition and consciousness. Specifically, their impact on brain function propagates across the structural connectome - a network of white matter pathways linking different regions.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
October 2024
Background: Heavy alcohol use and its associated conditions, such as alcohol use disorder, impact millions of individuals worldwide. While our understanding of the neurobiological correlates of alcohol use has evolved substantially, we still lack models that incorporate whole-brain neuroanatomical, functional, and pharmacological information under one framework.
Methods: Here, we utilized diffusion and functional magnetic resonance imaging to investigate alterations to brain dynamics in 130 individuals with a high amount of current alcohol use.
Striking progress has been made in understanding cognition by analyzing how the brain is engaged in different modes of information processing. For instance, so-called synergistic information (information encoded by a set of neurons but not by any subset) plays a key role in areas of the human brain linked with complex cognition. However, two questions remain unanswered: (a) how and why a cognitive system can become highly synergistic; and (b) how informational states map onto artificial neural networks in various learning modes.
View Article and Find Full Text PDFDisentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information.
View Article and Find Full Text PDFUnderstanding how different networks relate to each other is key for understanding complex systems. We introduce an intuitive yet powerful framework to disentangle different ways in which networks can be (dis)similar and complementary to each other. We decompose the shortest paths between nodes as uniquely contributed by one source network, or redundantly by either, or synergistically by both together.
View Article and Find Full Text PDFThis study reports a peculiar case of systemic candidiasis infection associated with pulmonary aspergillosis in an apparently immunocompetent alpaca. A captive 7-year-old female alpaca exhibited respiratory symptoms, underwent treatment with benzylpenicillin and dexamethasone, and succumbed to the infection 40 days later. During the post-mortem examination, subcutaneous emphysema, widespread pneumonia with multiple suppurative foci, scattered necro-suppurative lesions throughout the renal and hepatic parenchyma were evident.
View Article and Find Full Text PDFThe human brain is never at "rest"; its activity is constantly fluctuating over time, transitioning from one brain state-a whole-brain pattern of activity-to another. Network control theory offers a framework for understanding the effort - energy - associated with these transitions. One branch of control theory that is especially useful in this context is "optimal control", in which input signals are used to selectively drive the brain into a target state.
View Article and Find Full Text PDFA central challenge of neuroscience is to elucidate how brain function supports consciousness. Here, we combine the specificity of focal deep brain stimulation with fMRI coverage of the entire cortex, in awake and anaesthetised non-human primates. During propofol, sevoflurane, or ketamine anaesthesia, and subsequent restoration of responsiveness by electrical stimulation of the central thalamus, we investigate how loss of consciousness impacts distributed patterns of structure-function organisation across scales.
View Article and Find Full Text PDFCaseous lymphadenitis is a chronic debilitating disease typical of small ruminants, but it is also noted in several other domestic and wild species. In this report, we present the first documented case in Italy of pseudotuberculosis in a roe deer (, Linnaeus 1758) found dead in the mountains of Forlì-Cesena province, Emilia Romagna region. The carcass underwent necropsy according to standard protocols, revealing generalized lymphadenopathy and severe apostematous pneumonia with multifocal and encapsulated abscesses.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2024
Recent research is revealing how cognitive processes are supported by a complex interplay between the brain and the rest of the body, which can be investigated by the analysis of physiological features such as breathing rhythms, heart rate, and skin conductance. Heart rate dynamics are of particular interest as they provide a way to track the sympathetic and parasympathetic outflow from the autonomic nervous system, which is known to play a key role in modulating attention, memory, decision-making, and emotional processing. However, extracting useful information from heartbeats about the autonomic outflow is still challenging due to the noisy estimates that result from standard signal-processing methods.
View Article and Find Full Text PDFPleuromutilins (tiamulin and valnemulin) are often used to treat swine dysentery due to recurrent resistance to macrolides and lincosamides. Recently, reduced susceptibility of B. hyodysenteriae to pleuromutilin has been reported.
View Article and Find Full Text PDF