Structural superlubricity is a special frictionless contact in which two crystals are in incommensurate arrangement such that relative in-plane translation is associated with vanishing energy barrier crossing. So far, it has been realized in multilayer graphene and other van der Waals (2D crystals with hexagonal or triangular crystalline symmetries, leading to isotropic frictionless contacts. Directional structural superlubricity, to date unrealized in 2D systems, is possible when the reciprocal lattices of the two crystals coincide in one direction only.
View Article and Find Full Text PDFAging is a universal biological process characterized by a progressive, cumulative decline in homeostatic capabilities and physiological functions, which inevitably increases vulnerability to diseases. A number of molecular pathomechanisms and hallmarks of aging have been recognized, yet we miss a thorough understanding of their complex interconnectedness. This review explores the molecular and cellular mechanisms underlying human aging, with a focus on the multiple roles of high mobility group Box 1 protein (HMGB1), the archetypal damage-associated molecular pattern (DAMP) molecule.
View Article and Find Full Text PDFIn investigating the monoatomic layers of P, several stable two-dimensional (2D) allotropes have been theoretically predicted. Among them, single-layer blue phosphorus (BlueP) appears to deliver promising properties. After initial success, where the structure of BlueP triangular patches on Au(111) was conceived on the basis of scanning tunneling microscopy (STM) and density functional theory (DFT), the surface structure model was revisited multiple times with increasing accuracy and insight of theoretical calculations and experimental datasets.
View Article and Find Full Text PDFBackground: Genital involvement in atopic dermatitis(AD) can have a significant impact on the patient's quality of life. However, inspection of genital areas is not usually conducted during routine examination and patients may be reluctant to inform the clinician or show this area.
Objective: to evaluate the efficacy of tralokinumab in AD patients with genital involvement.
Magnetic skyrmions are topological magnetic textures that hold great promise as nanoscale bits of information in memory and logic devices. Although room-temperature ferromagnetic skyrmions and their current-induced manipulation have been demonstrated, their velocity has been limited to about 100 meters per second. In addition, their dynamics are perturbed by the skyrmion Hall effect, a motion transverse to the current direction caused by the skyrmion topological charge.
View Article and Find Full Text PDFNowadays, dielectric metasurfaces are a promising platform in many different research fields such as sensing, lasing, all-optical modulation and nonlinear optics. Among all the different kinds of such thin structures, asymmetric geometries are recently attracting increasing interest. In particular, nonlinear light-matter interaction in metasurfaces constitutes a valid approach for achieving miniaturized control over light.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
A complex interplay between the crystal structure and the electron behavior within borophene renders this material an intriguing 2D system, with many of its electronic properties still undiscovered. Experimental insight into those properties is additionally hampered by the limited capabilities of the established synthesis methods, which, in turn, inhibits the realization of potential borophene applications. In this multimethod study, photoemission spectroscopies and scanning probe techniques complemented by theoretical calculations have been used to investigate the electronic characteristics of a high-coverage, single-layer borophene on the Ir(111) substrate.
View Article and Find Full Text PDFIn the present work we investigate the growth of monolayer MoSe on selenium-intercalated graphene on Ru(0001), a model layered heterostructure combining a transition metal dichalcogenide with graphene, using low energy electron microscopy and micro-diffraction. Real-time observation of MoSe on graphene growth reveals the island nucleation dynamics at the nanoscale. Upon annealing, larger islands are formed by sliding and attachment of multiple nanometer-sized MoSe flakes.
View Article and Find Full Text PDFNon-isochromatism in X-ray PhotoEmission Electron Microscopy (XPEEM) may result in unwanted artifacts especially when working with large field of views. The lack of isochromatism of XPEEM images may result from multiple factors, for instance the energy dispersion of the X-rays on the sample or the effect of one or more dispersive elements in the electron optics of the microscope, or the combination of both. In practice, the photon energy or the electron kinetic energy may vary across the image, complicating image interpretation and analysis.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2023
Autophagy is a fundamental multi-tasking adaptive cellular degradation and recycling strategy. Following its causal implication in age-related decline, autophagy is currently among the most broadly studied and challenged mechanisms within aging research. Thanks to these efforts, new cellular nodes interconnected with this phylogenetically ancestral pathway and unexpected roles of autophagy-associated genetic products are unveiled daily, yet the history of functional adaptations of autophagy along its evolutive trail is poorly understood and documented.
View Article and Find Full Text PDFAfter the discovery of graphene, many other 2D materials have been predicted theoretically and successfully prepared. In this context, single-sheet black phosphorus - phosphorene - is emerging as a viable contender in the field of (2D) semiconductors. Phosphorene offers high carrier mobility and an anisotropic structure that gives rise to a modulation of physical and chemical properties.
View Article and Find Full Text PDFLiCoO (LCO) is a common battery cathode material that has recently emerged as a promising material for other applications including electrocatalysis and as electrochemical random access memory (ECRAM). During charge-discharge cycling LCO exhibits phase transformations that are significantly complicated by electron correlation. While the bulk phase diagram for an ensemble of battery particles has been studied extensively, it remains unclear how these phases scale to nanometer dimensions and the effects of strain and diffusional anisotropy at the single-particle scale.
View Article and Find Full Text PDFThe control of heat at the nanoscale via the excitation of localized surface plasmons in nanoparticles (NPs) irradiated with light holds great potential in several fields (cancer therapy, catalysis, desalination). To date, most thermoplasmonic applications are based on Ag and Au NPs, whose cost of raw materials inevitably limits the scalability for industrial applications requiring large amounts of photothermal NPs, as in the case of desalination plants. On the other hand, alternative nanomaterials proposed so far exhibit severe restrictions associated with the insufficient photothermal efficacy in the visible, the poor chemical stability, and the challenging scalability.
View Article and Find Full Text PDFIn stacks of two-dimensional crystals, mismatch of their lattice constants and misalignment of crystallographic axes lead to formation of moiré patterns. We show that moiré superlattice effects persist in twisted bilayer graphene (tBLG) with large twists and short moiré periods. Using angle-resolved photoemission, we observe dramatic changes in valence band topology across large regions of the Brillouin zone, including the vicinity of the saddle point at and across 3 eV from the Dirac points.
View Article and Find Full Text PDFBackground: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, an increasing number of chilblain-like lesions (ChLL) have been increasingly reported worldwide. To date, the causal link between ChLL and SARS-CoV-2 infection has not been unequivocally established.
Methods: In this case series, we present demographic, clinical, laboratory, and histopathological information regarding 27 young patients with a clinical diagnosis of ChLL who referred to the Dermatology Unit of Papa Giovanni XXIII Hospital, Bergamo, Italy, from 1 April 2020 to 1 June 2020.
We report on a custom-built UHV-compatible Magneto-Optical Kerr Effect (MOKE) magnetometer for applications in surface and materials sciences, operating in tandem with the PhotoEmission Electron Microscope (PEEM) endstation at the Nanospectroscopy beamline of the Elettra synchrotron. The magnetometer features a liquid-nitrogen-cooled electromagnet that is fully compatible with UHV operation and produces magnetic fields up to about 140 mT at the sample. Longitudinal and polar MOKE measurement geometries are realized.
View Article and Find Full Text PDFAutophagy maintains cellular homeostasis and its dysfunction has been implicated in aging. Bats are the longest-lived mammals for their size, but the molecular mechanisms underlying their extended healthspan are not well understood. Here, drawing on >8 years of mark-recapture field studies, we report the first longitudinal analysis of autophagy regulation in bats.
View Article and Find Full Text PDFTin diselenide (SnSe) is a van der Waals semiconductor, which spontaneously forms a subnanometric SnO skin once exposed to air. Here, by means of surface-science spectroscopies and density functional theory, we have investigated the charge redistribution at the SnO-SnSe heterojunction in both oxidative and humid environments. Explicitly, we find that the work function of the pristine SnSe surface increases by 0.
View Article and Find Full Text PDFWith their ns2 np3 valence electronic configuration, pnictogens are the only system to crystallize in layered van der Waals (vdW) and quasi-vdW structures throughout the group. Light pnictogens crystallize in the A17 phase, and bulk heavier elements prefer the A7 phase. Herein, we demonstrate that the A17 of heavy pnictogens can be stabilized in antimonene grown on weakly interacting surfaces and that it undergoes a spontaneous thickness-driven transformation to the stable A7 phase.
View Article and Find Full Text PDFBats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus).
View Article and Find Full Text PDFThe recent discovery of magnetic van der Waals (vdW) materials triggered a wealth of investigations in materials science and now offers genuinely new prospects for both fundamental and applied research. Although the catalog of vdW ferromagnets is rapidly expanding, most of them have a Curie temperature below 300 K, a notable disadvantage for potential applications. Combining element-selective X-ray magnetic imaging and magnetic force microscopy, we resolve at room temperature the magnetic domains and domain walls in micron-sized flakes of the CrTe vdW ferromagnet.
View Article and Find Full Text PDF