Publications by authors named "Andrea Lippoldt"

To investigate strain differences and genetic effects on different aspects of neurogenesis, we compared young adult spontaneously hypertensive/hyperactive rats (SHR) and stroke-prone SHR (SHRSP) with the genetic control WKY strain. In both hypertensive/hyperactive strains, the number of newly generated neurons and the number of lineage-determined cells as detected by doublecortin (DCX) immunoreactivity were significantly increased. SHRSP had significantly more DCX-positive cells than the other groups.

View Article and Find Full Text PDF

Stroke is a very complex disease influenced by many risk factors: genetic, environmental and comorbidities, such as hypertension, diabetes mellitus, obesity and having had a previous stroke. Neuroprotective therapies that have been found to be successful in laboratory animals have failed to produce the same benefits in clinical trials. Currently, a re-analysis of the clinical trial failures is underway and new therapeutic approaches using the growing knowledge from neurogenesis and neuroinflammation studies, combined with the information from gene expression studies, are taking place.

View Article and Find Full Text PDF

Increased cardiac angiotensin converting enzyme-1 (ACE1) is found in individuals who carry a deletion in intron 16 of ACE1 gene or in individuals who suffer from cardiac disorders, such as hypertrophy. However, whether a single increase in ACE1 expression leads to spontaneous cardiac defects remains unknown. To determine if the increased cardiac ACE1 actively plays a role or is merely the consequence of pathological changes in the process of cardiac hypertrophy, we generated a transgenic rat model with selective over-expression of human ACE1 in the cardiac ventricles.

View Article and Find Full Text PDF

To study the mechanisms by which missense mutations in alpha-tropomyosin cause familial hypertrophic cardiomyopathy, we generated transgenic rats overexpressing alpha-tropomyosin with one of two disease-causing mutations, Asp(175)Asn or Glu(180)Gly, and analyzed phenotypic changes at molecular, morphological, and physiological levels. The transgenic proteins were stably integrated into the sarcomere, as shown by immunohistochemistry using a human-specific anti-alpha-tropomyosin antibody, ARG1. In transgenic rats with either alpha-tropomyosin mutation, molecular markers of cardiac hypertrophy were induced.

View Article and Find Full Text PDF

1. The blood-brain barrier is essential for the maintenance and regulation of the neural microenvironment. The main characteristic features of blood-brain barrier endothelial cells are an extremely low rate of transcytotic vesicles and a restrictive paracellular diffusion barrier.

View Article and Find Full Text PDF

The Mas proto-oncogene encodes a G-protein-coupled receptor with the common seven transmembrane domains and may be involved in the actions of angiotensins. Because Mas is highly expressed in testis, we investigated the cell type-specificity and the onset of expression of the gene in this organ. Using an RNase protection assay, it could be shown that neither whole testes nor cultured Sertoli and Leydig cells of 12-day-old mice express Mas mRNA.

View Article and Find Full Text PDF