Publications by authors named "Andrea Lindenmair"

Amniotic cells show exciting stem cell features, which has led to the idea of using living cells of human amniotic membranes (hAMs) in toto for clinical applications. However, under common cell culture conditions, viability of amniotic cells decreases rapidly, whereby reasons for this decrease are unknown so far. Recently, it has been suggested that loss of tissue tension in vivo leads to apoptosis.

View Article and Find Full Text PDF

The human amniotic membrane (hAM) has been used for tissue regeneration for over a century. (), cells of the hAM are exposed to low oxygen tension (1-4% oxygen), while the hAM is usually cultured in atmospheric, meaning high, oxygen tension (20% oxygen). We tested the influence of oxygen tensions on mitochondrial and inflammatory parameters of human amniotic mesenchymal stromal cells (hAMSCs).

View Article and Find Full Text PDF

Over a century ago, clinicians started to use the human amniotic membrane for coverage of wounds and burn injuries. To date, literally thousands of different clinical applications exist for this biomaterial almost exclusively in a decellularized or denuded form. Recent reconsiderations for the use of vital human amniotic membrane for clinical applications would take advantage of the versatile cells of embryonic origin including the entirety of their cell organelles.

View Article and Find Full Text PDF

Purpose: Human amniotic epithelial cells (hAECs) are promising tools for endothelial repair in vascular regenerative medicine. We hypothesized that these epithelial cells are capable of repairing the damaged endothelial layer following balloon injury of the carotid artery in adult male rats.

Results: Two days after injury, the transplanted hAECs were observed at the luminal side of the arterial wall.

View Article and Find Full Text PDF

Cells of the human amniotic membrane (hAM) have stem cell characteristics with low immunogenicity and anti-inflammatory properties. While hAM is an excellent source for tissue engineering, so far, its sub-regions have not been taken into account. We show that placental and reflected hAM differ distinctly in morphology and functional activity, as the placental region has significantly higher mitochondrial activity, however significantly less reactive oxygen species.

View Article and Find Full Text PDF

Human amniotic membrane (hAM) represents a tissue that is well established as biomaterial in the clinics with potential for new applications in regenerative medicine. For tissue engineering (TE) strategies, cells are usually combined with inductive factors and a carrier substrate. We have previously recognized that hAM represents a natural, preformed sheet including highly potent stem cells.

View Article and Find Full Text PDF

Objective: The need for an alternative to fetal bovine serum (FBS) is known to scientists and users involved in cell therapy or advanced therapy medicinal products. Human serum (huS) and platelet lysate (hPL) can be used as alternatives resulting in similar or even superior results concerning cell expansion.

Methods: We developed protocols for the production of huS and two types of hPL and tested them in the expansion of human fibroblasts and adipose tissue-derived stem cells (ASC).

View Article and Find Full Text PDF

The human amniotic membrane (hAM), thanks to its favorable properties, including anti-inflammatory, anti-fibrotic and pro-regenerative effects, is a well-known surgical material for many clinical applications, when used both freshly after isolation and after preservation. We have shown previously that hAM patching is a potential approach to counteract liver fibrosis. Indeed, when fresh hAM was used to cover the liver surface of rats with liver fibrosis induced by the bile duct ligation (BDL) procedure, the progression and severity of fibrosis were significantly reduced.

View Article and Find Full Text PDF

Mesenchymal stem or stromal cells (MSC) have proven to offer great promise for cell-based therapies and tissue engineering applications, as these cells are capable of extensive self-renewal and display a multilineage differentiation potential. Furthermore, MSC were shown to exhibit immunomodulatory properties and display supportive functions through parakrine effects. Besides bone marrow (BM), still today the most common source of MSC, these cells were found to be present in a variety of postnatal and extraembryonic tissues and organs as well as in a large variety of fetal tissues.

View Article and Find Full Text PDF

Tissue engineering strategies usually require cell isolation and combination with a suitable biomaterial. Human amniotic membrane (AM) represents a natural two-layered sheet comprising cells with proven stem cell characteristics. In our approach, we evaluated the differentiation potential of AM in toto with its sessile stem cells as alternative to conventional approaches requiring cell isolation and combination with biomaterials.

View Article and Find Full Text PDF

Apoptosis and underlying mechanisms were evaluated in human umbilical vein endothelial cells (HUVECs), in target tissues of late diabetic vascular complications [human aortic endothelial cells (HAECs) and human retinal endothelial cells (HRECs)], and in endothelial progenitor cells (EPCs) exposed to FFAs, which are elevated in obesity and diabetes. Saturated stearic acid concentration dependently induced apoptosis that could be mediated via reduced membrane fluidity, because both apoptosis and membrane rigidity are counteracted by eicosapentaenoic acid. PUFAs triggered apoptosis at a concentration of 300 micromol/l in HUVECs, HAECs, and EPCs, but not HRECs, and, in contrast to stearic acid, involved caspase-8 activation.

View Article and Find Full Text PDF

Objective: Plasma free fatty acid (FFA) concentrations are increased in states of insulin resistance. Therefore, this study evaluated apoptosis and underlying mechanisms induced by selected nutritional FFAs, a defined FFA-mix, and human plasma containing high FFA concentrations in human smooth muscle cells (HSMCs).

Research Design And Methods: HSMCs were incubated (24-72 h) with selected FFAs (100-300 micromol/l), an FFA-mix (palmitic-/stearic-/oleic-/linoleic-/alpha-linolenic acid=2.

View Article and Find Full Text PDF