Publications by authors named "Andrea Le Blanc"

Human genetic and animal model studies indicate that brain microglial inflammation is a primary driver of cognitive impairment in Alzheimer Disease (AD). Inflammasome-activated Caspase-1 (Casp1) is associated with both AD microglial inflammation and neuronal degeneration. In mice, Casp1 genetic ablation or VX-765 small molecule inhibition of Casp1 given at onset of cognitive deficits strongly supports the association between microglial inflammation and cognitive impairment.

View Article and Find Full Text PDF

The sequential activation of Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing protein 1 (Nlrp1) inflammasome, Caspase-1 (Casp1), and Caspase-6 (Casp6) is implicated in primary human neuron cultures and Alzheimer Disease (AD) neurodegeneration. To validate the Nlrp1-Casp1-Casp6 pathway in vivo, the APP J20 AD transgenic mouse model was generated on either a Nlrp1, Casp1 or Casp6 null genetic background and mice were studied at 4-5 months of age. Episodic memory deficits assessed with novel object recognition were normalized by genetic ablation of Nlrp1, Casp1, or Casp6 in J20 mice.

View Article and Find Full Text PDF

Caspase-6 (Casp6) is implicated in Alzheimer disease (AD) cognitive impairment and pathology. Hippocampal atrophy is associated with cognitive impairment in AD. Here, a rare functional exonic missense CASP6 single nucleotide polymorphism (SNP), causing the substitution of asparagine with threonine at amino acid 73 in Casp6 (Casp6N73T), was associated with hippocampal subfield CA1 volume preservation.

View Article and Find Full Text PDF

Active Caspase-6 (Casp6) and Tau cleaved by Casp6 at amino acids 402 (Tau∆D402) and 421 (Tau∆D421) are present in early Alzheimer disease intraneuronal neurofibrillary tangles, which are made primarily of filamentous Tau aggregates. To assess whether Casp6 cleavage of Tau contributes to Tau pathology and Casp6-mediated age-dependent cognitive impairment, we generated transgenic knock-in mouse models that conditionally express full-length human Tau (hTau) 0N4R only (CTO) or together with human Casp6 (hCasp6) (CTC). Region-specific hippocampal and cortical hCasp6 and hTau expression were confirmed with western blot and immunohistochemistry in 2-25-month-old brains.

View Article and Find Full Text PDF

Early therapeutic interventions are essential to prevent Alzheimer Disease (AD). The association of several inflammation-related genetic markers with AD and the early activation of pro-inflammatory pathways in AD suggest inflammation as a plausible therapeutic target. Inflammatory Caspase-1 has a significant impact on AD-like pathophysiology and Caspase-1 inhibitor, VX-765, reverses cognitive deficits in AD mouse models.

View Article and Find Full Text PDF

Activated Caspase-6 (Casp6) is associated with age-dependent cognitive impairment and Alzheimer disease (AD). Mice expressing human Caspase-6 in hippocampal CA1 neurons develop age-dependent cognitive deficits, neurodegeneration and neuroinflammation. This study assessed if methylene blue (MB), a phenothiazine that inhibits caspases, alters Caspase-6-induced neurodegeneration and cognitive impairment in mice.

View Article and Find Full Text PDF

Introduction: The Consortium for the early identification of Alzheimer's disease-Quebec (CIMA-Q) created a research infrastructure to recruit, characterize, and track disease progression in individuals at risk of dementia.

Methods: CIMA-Q established standardized clinical, neuropsychological, neuroimaging, blood (plasma, serum, RNA, genomic DNA), cryopreserved peripheral blood mononuclear cells, and cerebrospinal fluid collection protocols. These data and biological materials are available to the research community.

View Article and Find Full Text PDF

Caspase-6 is a cysteine protease that plays essential roles in programmed cell death, axonal degeneration, and development. The excess neuronal activity of Caspase-6 is associated with Alzheimer disease neuropathology and age-dependent cognitive impairment. Caspase-6 inhibition is a promising strategy to stop early stage neurodegenerative events, yet finding potent and selective Caspase-6 inhibitors has been a challenging task due to the overlapping structural and functional similarities between caspase family members.

View Article and Find Full Text PDF

Alzheimer's disease (AD) occurs as either an autosomal dominant inherited disease or sporadically. While familial mutant genes can be expressed in cells or in animal models to assess dysregulated functions, sporadic AD cannot be replicated in models given our lack of understanding of causality. Furthermore, the study of sporadic forms of AD is difficult given the inaccessibility of brain tissues in living individuals and the manifestation of symptoms years after the onset of disease.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an intractable progressive neurodegenerative disease characterized by cognitive decline and dementia. An inflammatory neurodegenerative pathway, involving Caspase-1 activation, is associated with human age-dependent cognitive impairment and several classical AD brain pathologies. Here, we show that the nontoxic and blood-brain barrier permeable small molecule Caspase-1 inhibitor VX-765 dose-dependently reverses episodic and spatial memory impairment, and hyperactivity in the J20 mouse model of AD.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of Caspase-6 (Casp6) and its variants R65W and G66R as potential therapeutic targets for Alzheimer’s Disease (AD) and cognitive decline with age.
  • * Researchers found that both variants significantly reduced Casp6 activity and stability, with G66R acting as an inhibitor of the normal Casp6 function.
  • * The findings suggest that full Casp6 activity may not be crucial for human health and that Casp6 inhibitors could be effective in treating neurodegeneration associated with aging and AD.
View Article and Find Full Text PDF

Active cysteinyl protease Caspase-6 is associated with early Alzheimer and Huntington diseases. Higher entorhinal cortex and hippocampal Caspase-6 levels correlate with lower cognitive performance in aged humans. Caspase-6 induces axonal degeneration in human primary neuron cultures and causes inflammation and neurodegeneration in mouse hippocampus, and age-dependent memory impairment.

View Article and Find Full Text PDF

Background: The activation of the aspartate-specific cysteinyl protease, Caspase-6, is proposed as an early pathogenic event of Alzheimer disease (AD) and Huntington's disease. Caspase-6 inhibitors could be useful against these neurodegenerative diseases but most Caspase-6 inhibitors have been exclusively studied in vitro or show acute liver toxicity in humans. Here, we assessed vinyl sulfone small molecule peptide caspase inhibitors for potential use in vivo.

View Article and Find Full Text PDF

The cellular prion protein (PrP) is essential for transmissible prion diseases, but its exact physiological function remains unclear. Better understanding the regulation of the human prion protein gene (PRNP) expression can provide insight into this elusive function. Spliced XBP1 (sXBP1) was recently shown to mediate endoplasmic reticulum (ER) stress-induced PRNP expression.

View Article and Find Full Text PDF

Abnormally elevated hippocampal Caspase-6 (Casp6) activity is intimately associated with age-related cognitive impairment in humans and in mice. In humans, these high levels of Casp6 activity are initially localized in the entorhinal cortex, the area of the brain first affected by the formation of neurofibrillary tangles, according to Braak staging. The reason for the high vulnerability of entorhinal cortex neurons to neurofibrillary tangle pathology and Casp6 activity is unknown.

View Article and Find Full Text PDF

Background/purpose: Surgical site infection (SSI) rate in pediatric appendicitis is a commonly used hospital quality metric. We hypothesized that surveillance of organ-space SSI (OSI) using cultures alone would fail to capture many clinically-important events.

Methods: A prospective, multidisciplinary surveillance program recorded 30-day SSI and hospital length of stay (LOS) for patients <18years undergoing appendectomy for perforated appendicitis from 2012 to 2015.

View Article and Find Full Text PDF

Similar to many proteins trafficking through the secretory pathway, cellular prion protein (PrP) partly retrotranslocates from the endoplasmic reticulum to the cytosol through the endoplasmic reticulum-associated degradation (ERAD) pathway in an attempt to alleviate accumulation of cellular misfolded PrP. Surprisingly, familial PrP mutants fail to retrotranslocate and simultaneously block normal cellular PrP retrotranslocation. That impairments in retrotranslocation of misfolded proteins could lead to global disruptions in cellular homeostasis prompted further investigations into PrP mutant retrotranslocation defects.

View Article and Find Full Text PDF

Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures.

View Article and Find Full Text PDF

Familial prion protein (PrP) mutants undergo conversion from soluble and protease-sensitive to insoluble and partially protease-resistant proteins. Cyclin-dependent kinase 5 (Cdk5) phosphorylation of wild type PrP (pPrP) at serine 43 induces a conversion of PrP into aggregates and fibrils. Here, we investigated whether familial PrP mutants are predisposed to Cdk5 phosphorylation and whether phosphorylation of familial PrP mutants increases conversion.

View Article and Find Full Text PDF

Caspases play an important role in maintaining tissue homeostasis. Active Caspase-6 (Casp6) is considered a novel therapeutic target against Alzheimer disease (AD) since it is present in AD pathological brain lesions, associated with age-dependent cognitive decline, and causes age-dependent cognitive impairment in the mouse brain. However, active Casp6 is highly expressed and activated in normal human colon epithelial cells raising concerns that inhibiting Casp6 in AD may promote colon carcinogenesis.

View Article and Find Full Text PDF

Caspase-6 is an effector caspase that has not been investigated thoroughly despite the fact that Caspase-6 is strongly activated in Alzheimer disease brains. To understand the full physiological impact of Caspase-6 in humans, we investigated Caspase-6 expression. We performed western blot analyses to detect the pro-Caspase-6 and its active p20 subunit in fetal and adult lung, kidney, brain, spleen, muscle, stomach, colon, heart, liver, skin, and adrenals tissues.

View Article and Find Full Text PDF

A recent paradigm shift appears to be underway on what scientists believe to be the cause of Alzheimer's disease (AD). The amyloid hypothesis has dominated the field of basic research for the last 25 years, and although these massive efforts have culminated in efficient removal of amyloid from the brains of patients, the absence of beneficial effects for the patient have been greatly disappointing. This has created a shift in the focus on amyloid to a much greater focus on Tau protein, in the hope that preventing tangle formation may inhibit or delay the progression of AD.

View Article and Find Full Text PDF