Publications by authors named "Andrea Lancichinetti"

The existence of over- and under-represented sequence motifs in genomes provides evidence of selective evolutionary pressures on biological mechanisms such as transcription, translation, ligand-substrate binding, and host immunity. In order to accurately identify motifs and other genome-scale patterns of interest, it is essential to be able to generate accurate null models that are appropriate for the sequences under study. While many tools have been developed to create random nucleotide sequences, protein coding sequences are subject to a unique set of constraints that complicates the process of generating appropriate null models.

View Article and Find Full Text PDF

Community detection of network flows conventionally assumes one-step dynamics on the links. For sparse networks and interest in large-scale structures, longer timescales may be more appropriate. Oppositely, for large networks and interest in small-scale structures, shorter timescales may be better.

View Article and Find Full Text PDF

Random walks on networks is the standard tool for modelling spreading processes in social and biological systems. This first-order Markov approach is used in conventional community detection, ranking and spreading analysis, although it ignores a potentially important feature of the dynamics: where flow moves to may depend on where it comes from. Here we analyse pathways from different systems, and although we only observe marginal consequences for disease spreading, we show that ignoring the effects of second-order Markov dynamics has important consequences for community detection, ranking and information spreading.

View Article and Find Full Text PDF

The community structure of complex networks reveals both their organization and hidden relationships among their constituents. Most community detection methods currently available are not deterministic, and their results typically depend on the specific random seeds, initial conditions and tie-break rules adopted for their execution. Consensus clustering is used in data analysis to generate stable results out of a set of partitions delivered by stochastic methods.

View Article and Find Full Text PDF

Modularity maximization is the most popular technique for the detection of community structure in graphs. The resolution limit of the method is supposedly solvable with the introduction of modified versions of the measure, with tunable resolution parameters. We show that multiresolution modularity suffers from two opposite coexisting problems: the tendency to merge small subgraphs, which dominates when the resolution is low; the tendency to split large subgraphs, which dominates when the resolution is high.

View Article and Find Full Text PDF

Community structure is one of the main structural features of networks, revealing both their internal organization and the similarity of their elementary units. Despite the large variety of methods proposed to detect communities in graphs, there is a big need for multi-purpose techniques, able to handle different types of datasets and the subtleties of community structure. In this paper we present OSLOM (Order Statistics Local Optimization Method), the first method capable to detect clusters in networks accounting for edge directions, edge weights, overlapping communities, hierarchies and community dynamics.

View Article and Find Full Text PDF

Communities are clusters of nodes with a higher than average density of internal connections. Their detection is of great relevance to better understand the structure and hierarchies present in a network. Modularity has become a standard tool in the area of community detection, providing at the same time a way to evaluate partitions and, by maximizing it, a method to find communities.

View Article and Find Full Text PDF

Background: Community structure is one of the key properties of complex networks and plays a crucial role in their topology and function. While an impressive amount of work has been done on the issue of community detection, very little attention has been so far devoted to the investigation of communities in real networks.

Methodology/principal Findings: We present a systematic empirical analysis of the statistical properties of communities in large information, communication, technological, biological, and social networks.

View Article and Find Full Text PDF

Nodes in real-world networks are usually organized in local modules. These groups, called communities, are intuitively defined as subgraphs with a larger density of internal connections than of external links. In this work, we define a measure aimed at quantifying the statistical significance of single communities.

View Article and Find Full Text PDF

Uncovering the community structure exhibited by real networks is a crucial step toward an understanding of complex systems that goes beyond the local organization of their constituents. Many algorithms have been proposed so far, but none of them has been subjected to strict tests to evaluate their performance. Most of the sporadic tests performed so far involved small networks with known community structure and/or artificial graphs with a simplified structure, which is very uncommon in real systems.

View Article and Find Full Text PDF

Many complex networks display a mesoscopic structure with groups of nodes sharing many links with the other nodes in their group and comparatively few with nodes of different groups. This feature is known as community structure and encodes precious information about the organization and the function of the nodes. Many algorithms have been proposed but it is not yet clear how they should be tested.

View Article and Find Full Text PDF

Community structure is one of the most important features of real networks and reveals the internal organization of the nodes. Many algorithms have been proposed but the crucial issue of testing, i.e.

View Article and Find Full Text PDF