Publications by authors named "Andrea L Woodhead"

Honeybee larvae produce a silk made up of proteins in predominantly a coiled coil molecular structure. These proteins can be produced in recombinant systems, making them desirable templates for the design of advanced materials. However, the atomic level structure of these proteins is proving difficult to determine: firstly, because coiled coils are difficult to crystalize; and secondly, fibrous proteins crystalize as fibres rather than as discrete protein units.

View Article and Find Full Text PDF

Contamination caused by inappropriate carbon fibre (CF) storage may have an impact on their end use in reinforced composite materials. Due to the chemical complexity of CFs it is not easy to detect potential contaminants, especially at the early stage during manufacturing and handling. In this paper, X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared (FTIR) spectroscopy and Surface Energy Analysis (IGC-SEA) were used to assess the surfaces of CFs stored in polyolefin zip-lock bags for possible contamination.

View Article and Find Full Text PDF

Bombus terrestris, commonly known as the buff-tailed bumblebee, is native to Europe, parts of Africa and Asia. It is commercially bred for use as a pollinator of greenhouse crops. Larvae pupate within a silken cocoon that they construct from proteins produced in modified salivary glands.

View Article and Find Full Text PDF

Prior to the 19th century the use of purple dyes for textile coloration was expensive and usually limited to royalty. The discovery of several synthetic purple dyes during the 19th century made the production of purple textiles more affordable and thus more readily available. The identification of the source of the purple coloration is of historical interest.

View Article and Find Full Text PDF

Tris-[3-(trimethoxysilyl)propyl] isocyanurate (TTPI) has been used as a precursor to prepare a sol using ethanol as the solvent under acidic conditions. The sol-gel was applied for the surface treatment of aluminum and copper. Infrared and Raman spectra have been recorded for pure TTPI and the TTPI sol, xerogel and TTPI sol-gel coated metals.

View Article and Find Full Text PDF

The use of coiled coil proteins as the basis of silk materials is an engineering solution that has evolved convergently in at least five insect lineages-the stinging hymenopterans (ants, bees, hornets), argid sawflies, fleas, lacewings, and praying mantises-and persisted throughout large radiations of these insect families. These coiled coil silk proteins share a characteristic distinct from other coiled coil proteins, in that they are fabricated into solid materials after accumulating as highly concentrated solutions within dedicated glands. Here, we relate the amino acid sequences of these proteins to the secondary and tertiary structural information available from biophysical methods such as X-ray scattering, nuclear magnetic resonance and Raman spectroscopy.

View Article and Find Full Text PDF

Raspy crickets produce silk webs that are used to build shelters. These webs have been found to consist of both fiber and film components. Raman spectra obtained from both components were found to be very similar for a given species.

View Article and Find Full Text PDF

The realized mechanical properties of CNT macrostructures such as webs and yarns remain significantly lower than those of the individual CNTs. Structural changes induced by thermal annealing under inert atmosphere were assessed using Raman spectroscopy. Annealing above 1000 °C resulted in a marked decrease in the D/G ratio which can be attributed to an increase in the crystallite size or the distance between defects.

View Article and Find Full Text PDF

Flexible and solvent stable fibers are produced after concentrated recombinant honeybee protein solutions are extruded into a methanol bath, dried, drawn in aqueous methanol, then covalently cross-linked using dry heat. Proteins in solution are predominantly coiled coil. Significant levels of non-orientated ß-sheets form during drying or after coagulation in aqueous methanol.

View Article and Find Full Text PDF

Silks are semi-crystalline solids in which protein chains are associated by intermolecular hydrogen bonding within ordered crystallites, and by entanglement within unordered regions. By varying the type of protein secondary structure within crystallites and the overall degree of molecular order within fibers, arthropods produce fibers with a variety of physical properties suited to many purposes. We characterized silk produced as a tactile stimulus during mating by the grey silverfish (Ctenolepisma longicaudata) using Fourier transform infrared spectroscopy, polarized Raman spectroscopy, gel electrophoresis and amino acid analysis.

View Article and Find Full Text PDF

Iron oxide magnetic nano-particles have been prepared by precipitation in an aqueous solution of iron(II) and iron(III) chlorides under basic condition. Surface modifications have been carried out by using tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS). The uncoated and coated particles have been characterized with transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, thermal gravimetric analysis (TGA), and infrared (IR) and Raman spectroscopy.

View Article and Find Full Text PDF

Photo-active colloidal anatase was prepared from sodium titanate nanotubes by refluxing in 0.3 M HCl. The refluxing was carried out in cycles, replacing the acid each time.

View Article and Find Full Text PDF

An investigation into the spectroscopic analysis of cotton waxes on Australian cottons was undertaken. The chemical composition of cotton wax is complex and contains a number of lipid classes. Infrared transmission spectroscopy coupled with principal component analysis was found to be capable of discriminating between solvent-extracted cotton waxes with differences in their alkyl functionality.

View Article and Find Full Text PDF