Publications by authors named "Andrea L Tracy"

Objective: Nausea and aversive food responses are commonly reported following bariatric surgery, along with post-surgical reduction in meal size. This study investigates whether a meal size limit can be conditioned by associating large meals with aversive outcomes.

Methods: In rats, the intake of meals exceeding a pre-defined size threshold was paired with lithium chloride-induced gastric illness, and the effects on self-determined food intakes and body weight were measured.

View Article and Find Full Text PDF

Prior work using animal models to study the effects of obesogenic diets on food motivation have generated inconsistent results, with some reporting increases and others reporting decreases in responding on food-reinforced tasks. Here, we identified two specific variables that may account for these discrepant outcomes - the length of time on the obesigenic diet and the familiarity of the food reinforcer - and examined the independent roles of these factors. Time on diet was found to be inversely related to food motivation, as rats consuming a 40% high-fat diet (HFD) for only 3weeks did not differ from chow-fed rats when responding for a sucrose reinforcer on a progressive ratio (PR) schedule, but responding was suppressed after 6weeks of ad lib HFD consumption.

View Article and Find Full Text PDF

This articles describes how a cascade of associative relationships involving the sensory properties of foods, the nutritional consequences of their consumption, and perceived internal states may play an important role in the learned control of energy intake and body weight regulation. In addition, we describe ways in which dietary factors in the current environment can promote excess energy intake and body weight gain by degrading these relationships or by interfering with the neural substrates that underlie the ability of animals to use them to predict the nutritive or energetic consequences of intake. We propose that an expanded appreciation of the diversity of orosensory, gastrointestinal, and energy state signals about which animals learn, combined with a greater understanding of predictive relationships in which these cues are embedded, will help generate new information and novel approaches to addressing the current global problems of obesity and metabolic disease.

View Article and Find Full Text PDF

Roux en Y gastric bypass (RYGB) surgery is currently the most effective therapy employed to treat obesity and its associated complications. In addition to weight loss and resolution of metabolic syndromes, such as diabetes, the RYGB procedure has been reported to increase alcohol consumption in humans. Using an outbred rodent model, we demonstrate that RYGB increases postsurgical ethanol consumption, that this effect cannot be explained solely by postsurgical weight loss and that it is independent of presurgical body weight or dietary composition.

View Article and Find Full Text PDF

Recent studies indicate that decreased central dopamine is associated with diet-induced obesity in humans and in animal models. In the current study, the authors assessed the hypothesis that diet-induced obesity reduces mesolimbic dopamine function. Specifically, the authors compared dopamine turnover in this region between rats fed a high-fat diet and those consuming a standard low-fat diet.

View Article and Find Full Text PDF

The regulation of energy balance depends on the precise co-ordination of multiple peripheral and central systems. Much recent research has highlighted the importance of behavioral mechanisms is this control and suggested that the regulation of body weight shares central nervous system pathways in common with other complex behaviors, including learning and drug addiction. We present a brief review of some of this work and highlight the novel functions for central orexigenic neuropeptides.

View Article and Find Full Text PDF

Consumption of a diet high in fat is a risk factor for a number of health problems, including obesity, type 2 diabetes and cardiovascular disease. Considerable pharmacological, genetic, and molecular evidence suggests that the hypothalamic melanocortin system plays a critical role in the control of food intake and body weight and, specifically, in fat ingestion. Administration of a melanocortin antagonist, agouti-related peptide (AgRP) (83-132) selectively increases intake of pure fat and high-fat mixed diets.

View Article and Find Full Text PDF

Recent conceptualizations of food intake have divided ingestive behavior into multiple distinct phases. Here, we present a temporally and operationally defined classification of ingestive behaviors. Importantly, various physiological signals including hypothalamic peptides are thought to impact these distinct behavioral phases of ingestion differently.

View Article and Find Full Text PDF

The intestinal taste aversion paradigm has previously demonstrated that animals could orally discriminate between carbohydrate and fat subsequent to pairing a gastrointestinal (GI) infusion of 1 nutrient with lithium chloride (LiCl), whereas they could not discriminate between 2 nonnutritive flavors (A. L. Tracy, R.

View Article and Find Full Text PDF

A number of recent studies implicate the gut-brain peptide ghrelin as a putative "hunger signal". Most of these studies, however, rely on either consummatory behavior (in humans or nonhuman animals) or self-report (in humans) to draw conclusions regarding the orexigenic properties of this peptide. The present study employs the deprivation intensity discrimination paradigm to assess the interoceptive sensory properties of ghrelin in rats.

View Article and Find Full Text PDF

To develop and use a behavioral paradigm for assessments of what nutrient properties are detected by intestinal chemoreceptors, we combined features of the "electronic esophagus" preparation (Elizalde G and Sclafani A. Physiol Behav 47: 63-77, 1990) and the conditioned taste aversion protocol (Garcia J and Koelling RA. Psychon Sci 4: 123-124, 1966).

View Article and Find Full Text PDF