Publications by authors named "Andrea L Phelps"

The synthesis of the metallodithiolate derivative of tungsten pentacarbonyl from the reaction of photogenerated W(CO)(5)THF and Ni-1 ((1,5-bis(2-mercapto-2-methylpropane)-1,5-diazacyclooctanato)nickel(II)) is described, along with its crystal structure. In N,N-dimethylformamide solution, the pentacarbonyl exists in equilibrium with its tetracarbonyl analogue and carbon monoxide. The pentacarbonyl complex stereoselectively loses cis carbonyl ligands, as is apparent from (13)CO-labeling studies, where the thus-formed tetracarbonyl tungsten complex resulting from chelate ring-closure is preferentially (13)CO-labeled among the two mutually trans CO groups.

View Article and Find Full Text PDF

The copolymerization of propylene oxide and CO2 has been investigated employing Cr(salen)N3 complexes as catalysts. Unfortunately the reaction could not be studied in real time via in situ IR spectroscopy, thereby obtaining detailed kinetic data, because of the copolymer limited solubility in most solvents. Investigations employing batch reactor runs concentrating on varying the cocatalyst, the equivalents of cocatalyst, and the steric and electronic structure of the catalyst through modification of the salen ligand were undertaken.

View Article and Find Full Text PDF

The design of efficient metal catalysts for the selective coupling of epoxides and carbon dioxide to afford completely alternating copolymers has made significant gains over the past decade. Hence, it is becoming increasingly clear that this "greener" route to polycarbonates has the potential to supplement or supplant current processes for the production of these important thermoplastics, which involve the condensation polymerization of diols and phosgene or organic carbonates. On the basis of the experiences in our laboratory, this Account summarizes our efforts at optimizing (salen)CrIIIX catalysts for the selective formation of polycarbonates from alicyclic and aliphatic epoxides with CO2.

View Article and Find Full Text PDF

The coupling of carbon monoxide and aziridines has been shown to be selective for comonomer-alternating enchainment in the presence of PhCH2C(O)Co(CO)4 to afford poly-beta-peptoids. In this article, we have investigated the mechanistic aspects of the reaction of CO and N-butylaziridine by means of in situ infrared spectroscopy employing CH3C(O)Co(CO)3L (L = PPh3 (1) and P(o-tolyl)3 (2)) as precatalysts. Precatalyst 1 exists in solution under catalytic conditions as an equilibrium mixture of 1 and CH3C(O)Co(CO)4, and affords both poly-beta-butylalanoid and the corresponding lactam.

View Article and Find Full Text PDF

The copolymerization of CO(2) and cyclohexene or propylene oxide has been examined employing (salen)Cr(III)Nu complexes (Nu = Cl or N(3)) as catalysts. The addition of various cocatalysts, including phosphines and PPN+ or Bu4N+ Cl- salts serves to greatly enhance the rate of copolymer production. In these instances, the mechanism of the initiation step appears to be unimolecular in catalyst concentration, unlike the bimolecular process cocatalyzed by N-methylimidazole.

View Article and Find Full Text PDF

A stable discrete nickel borohydride complex (Tp*NiBH(4) or Tp*NiBD(4)) was prepared using the nitrogen-donor ligand hydrotris(3,5-dimethylpyrazolyl)borate (Tp*-). This complex represents one of the best characterized nickel(II) borohydrides to date. Tp*NiBH(4) and Tp*NiBD(4) are stable toward air, boiling water, and high temperatures (mp > 230 degrees C dec).

View Article and Find Full Text PDF

Several synthetic approaches for the preparation of double metal cyanide (DMC) derivatives of iron(II) and zinc(II) are described. These include (1) metathesis reactions of ZnCl(2) or ZnI(2) with KCpFe(CN)(2)CO in aqueous solution, (2) reactions of KCpFe(CN)(2)CO and its phosphine-substituted analogues with Zn(CH(3)CN)(4)(BF(4))(2) and subsequent displacement of acetonitrile at the zinc centers by the addition of a neutral (phosphine) or anionic (phenoxide) ligand, and (3) reactions of the protonated HCpFe(CN)(2)(phosphine) complexes with Zn(N(SiMe(3))(2))(2), followed by the addition of phenols. All structures are based on a diamond-shaped planar arrangement of the Fe(2)(CN)(4)Zn(2) core with various appended ligands at the metal sites.

View Article and Find Full Text PDF