Publications by authors named "Andrea L Kalinoski"

Hypertension is a pervasive global health challenge, impacting over a billion individuals worldwide. Despite strides in therapeutic strategies, a significant proportion of patients remain resistant to the currently available therapies. While conventional treatments predominantly focus on cardiac, renal, and cerebral targets, emerging research underscores the pivotal role of the gut and its microbiota.

View Article and Find Full Text PDF

Francisella tularensis is the causative agent of the lethal disease tularemia. Despite decades of research, little is understood about why F. tularensis is so virulent.

View Article and Find Full Text PDF

Background: Rodent models are increasingly used to study the development and progression of arterial stiffness. Both the non-invasive Doppler derived Pulse Wave Velocity (PWV) and the invasively determined arterial elastance index (EaI) have been used to assess arterial stiffness in rats and mice, but the need for anesthetic agents to make these in vivo estimates may limit their utility. Thus, we sought to determine: 1) if known differences in arterial stiffness in spontaneously hypertensive rats (SHR) are detectable by PWV and EaI measurements when made under isoflurane anesthesia, and 2) if these two uniquely acquired assessments of arterial elasticity correlate.

View Article and Find Full Text PDF

Purpose: To formulate nanoemulsions (NE) with potential for delivering poorly water-soluble drugs to the lungs.

Method: A self nanoemulsifying composition consisting of cremophor RH 40, PEG 400 and labrafil M 2125 CS was selected after screening potential excipients. The solubility of carbamazepine, a poorly water-soluble drug, was tested in the formulation components.

View Article and Find Full Text PDF

A disintegrin-like metalloproteinase with thrombospondin motifs-16 (Adamts16) is an important candidate gene for hypertension. The goal of the present study was to further assess the candidacy of Adamts16 by targeted disruption of this gene in a rat genetic model of hypertension. A rat model was generated by manipulating the genome of the Dahl Salt-sensitive (S) rat using zinc-finger nucleases, wherein the mutant rat had a 17 bp deletion in the first exon of Adamts16, introducing a stop codon in the transcript.

View Article and Find Full Text PDF