Intratumor heterogeneity reduces treatment efficacy and complicates our understanding of tumor progression and there is a pressing need to understand the functions of heterogeneous tumor cell subpopulations within a tumor, yet systems to study these processes in vitro are limited. Single-cell RNA sequencing (scRNA-seq) has revealed that some cancer cell lines include distinct subpopulations. Here, we present clusterCleaver, a computational package that uses metrics of statistical distance to identify candidate surface markers maximally unique to transcriptomic subpopulations in scRNA-seq which may be used for FACS isolation.
View Article and Find Full Text PDFMotivation: Cells exhibit a wide array of morphological features, enabling computer vision methods to identify and track relevant parameters. Morphological analysis has long been implemented to identify specific cell types and cell responses. Here we asked whether morphological features might also be used to classify transcriptomic subpopulations within cancer cell lines.
View Article and Find Full Text PDFIntratumor heterogeneity reduces treatment efficacy and complicates our understanding of tumor progression. There is a pressing need to understand the functions of heterogeneous tumor cell subpopulations within a tumor, yet biological systems to study these processes are limited. With the advent of single-cell RNA sequencing (scRNA-seq), it has become clear that some cancer cell line models include distinct subpopulations.
View Article and Find Full Text PDFTumors exhibit high molecular, phenotypic, and physiological heterogeneity. In this effort, we employ quantitative magnetic resonance imaging (MRI) data to capture this heterogeneity through imaging-based subregions or "habitats" in a murine model of glioma. We then demonstrate the ability to model and predict the growth of the habitats using coupled ordinary differential equations (ODEs) in the presence and absence of radiotherapy.
View Article and Find Full Text PDFA significant challenge in the field of biomedicine is the development of methods to integrate the multitude of dispersed data sets into comprehensive frameworks to be used to generate optimal clinical decisions. Recent technological advances in single cell analysis allow for high-dimensional molecular characterization of cells and populations, but to date, few mathematical models have attempted to integrate measurements from the single cell scale with other types of longitudinal data. Here, we present a framework that actionizes static outputs from a machine learning model and leverages these as measurements of state variables in a dynamic model of treatment response.
View Article and Find Full Text PDF